Development of Antiviral Vaccine Utilizing Self-Destructing Salmonella for Antigen and DNA Vaccine Delivery

  • Protocol
  • First Online:
Viruses as Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2225))

Abstract

Vaccines are the most effective means to prevent infectious diseases, especially for viral infection. The key to an excellent antiviral vaccine is the ability to induce long-term protective immunity against a specific virus. Bacterial vaccine vectors have been used to impart protection against self, as well as heterologous antigens. One significant benefit of using live bacterial vaccine vectors is their ability to invade and colonize deep effector lymphoid tissues after mucosal delivery. The bacterium Salmonella is considered the best at this deep colonization. This is critically essential for inducing protective immunity. This chapter describes the methodology for develo** genetically modified self-destructing Salmonella (GMS) vaccine delivery systems targeting influenza infection. Specifically, the methods covered include the procedures for the development of GMSs for protective antigen delivery to induce cellular immune responses and DNA vaccine delivery to induce systemic immunity against the influenza virus. These self-destructing GMS could be modified to provide effective biological containment for genetically engineered bacteria used for a diversity of purposes in addition to vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curtiss R 3rd, **n W, Li Y et al (2010) New technologies in using recombinantattenuated Salmonella vaccine vectors. Crit Rev Immunol 30(3):255–270

    Article  CAS  Google Scholar 

  2. Kong W, Wanda SY, Zhang X et al (2008) Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci U S A 105(27):9361–9366

    Article  CAS  Google Scholar 

  3. Kong W, Brovold M, Koeneman BA et al (2012) Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 109(47):19414–19419

    Article  CAS  Google Scholar 

  4. Ameiss K, Ashraf S, Kong W et al (2010) Delivery of woodchuck hepatitis virus-like particle presented influenza M2e by recombinant attenuated Salmonella displaying a delayed lysis phenotype. Vaccine 28(41):6704–6713

    Article  CAS  Google Scholar 

  5. Juarez-Rodriguez MD, Yang J, Kader R et al (2012) Live attenuated Salmonella vaccines displaying regulated delayed lysis and delayed antigen synthesis to confer protection against Mycobacterium tuberculosis. Infect Immun 80(2):815–831

    Article  CAS  Google Scholar 

  6. Ashraf S, Kong W, Wang SF et al (2011) Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 29(23):3990–4002

    Article  CAS  Google Scholar 

  7. Black S, Wright NG (1955) Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem 213(1):39–50

    CAS  Google Scholar 

  8. Galan JE, Nakayama K, Curtiss IIIR 3rd (1990) Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94(1):29–35

    Article  CAS  Google Scholar 

  9. Curtiss R 3rd, Galan JE, Nakayama K et al (1990) Stabilization of recombinant avirulent vaccine strains in vivo. Res Microbiol 141(7–8):797–805

    Article  CAS  Google Scholar 

  10. Brown ED, Vivas EI, Kolter R et al (1995) MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 177(14):4194–4197

    Article  CAS  Google Scholar 

  11. Guzman LM, Belin D, Carson MJ et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    Article  CAS  Google Scholar 

  12. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

  13. Curtiss R 3rd, Beer RF Jr, Bassett EG (1976) Biological containment: The subordination of Escherichia coil K-12. In: Beers RF Jr, Bassett EG (eds) Recombinant Molecules: Impact on Science and Society. Raven Press, New York, NY, pp 45–56

    Google Scholar 

  14. Török I, Kari C (1980) Accumulation of ppGpp in a relA mutant of Escherichia coli during amino acid starvation. J Biol Chem 255:3838–3840

    Google Scholar 

  15. De Groote MA, Testerman T, Xu Y et al (1996) Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272:414–417

    Article  Google Scholar 

  16. Brumell JH, Tang P, Zaharik ML et al (2002) Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar typhimurium in the cytosol of epithelial cells. Infect Immun 70:3264–3270

    Article  CAS  Google Scholar 

  17. Brunner S, Sauer T, Carotta S et al (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther 7:401–407

    Article  CAS  Google Scholar 

  18. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22(2 Pt 2):479–488

    Article  CAS  Google Scholar 

  19. Mirzayans R, Aubin RA, Paterson MC (1992) Differential expression and stability of foreign genes introduced into human fibroblasts by nuclear versus cytoplasmic microinjection. Mutat Res 281(2):115–122

    Article  CAS  Google Scholar 

  20. Dean DA (1997) Import of plasmid DNA into the nucleus is sequence specific. Exp Cell Res 230(2):293–302

    Article  CAS  Google Scholar 

  21. Dean DA, Dean BS, Muller S et al (1999) Sequence requirements for plasmid nuclear import. Exp Cell Res 253(2):713–722

    Article  CAS  Google Scholar 

  22. Vacik J, Dean BS, Zimmer WE et al (1999) Cell-specific nuclear import of plasmid DNA. Gene Ther 6:1006–1014

    Article  CAS  Google Scholar 

  23. Black RE, Morris SS, Bryce J (2003) Where and why are 10 million children dying every year? Lancet 361(9376):2226–2234

    Article  Google Scholar 

  24. Alba BM, Zhong HJ, Pelayo JC et al (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 40(6):1323–1333

    Article  CAS  Google Scholar 

  25. Vitiello M, Isanto MD, Galdiero M et al (2004) Interleukin-8 production by THP-1 cells stimulated by Salmonella enterica serovar Typhimurium porins is mediated by AP-1, NF-kappaB and MAPK pathways. Cytokine 27(1):15–24

    Article  CAS  Google Scholar 

  26. Chatfield SN, Charles IG, Makoff AJ et al (1992) Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology 10:888–892

    CAS  Google Scholar 

  27. Tallant T, Deb A, Kar N et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4(33):1471–2180

    Google Scholar 

  28. Carswell S, Alwine JC (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol 9(10):4248–4258

    Article  CAS  Google Scholar 

  29. Ribeiro SC, Monteiro GA, Prazeres DM (2004) The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. J Gene Med 6(5):565–573

    Article  CAS  Google Scholar 

  30. Takeuchi A (1967) Electron microscope studies of experimental Salmonella infection. I Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50(1):109–136

    CAS  Google Scholar 

  31. Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180(1):15–23

    Article  CAS  Google Scholar 

  32. Francis CL, Ryan TA, Jones BD et al (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364(6438):639–642

    Article  CAS  Google Scholar 

  33. Jepson MA, Clark MA (2001) The role of M cells in Salmonella infection. Microbes Infect 3:1183–1190

    Article  CAS  Google Scholar 

  34. Bajaj V, Hwang C, Lee CA (1995) hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 18(4):715–727

    Article  CAS  Google Scholar 

  35. Bajaj V, Lucas RL, Hwang C et al (1996) Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22(4):703–714

    Article  CAS  Google Scholar 

  36. Srinivasan A, Foley J, Ravindran R et al (2004) Low-dose Salmonella infection evades activation of flagellin-specific CD4 T cells. J Immunol 173(6):4091–4099

    Article  CAS  Google Scholar 

  37. Fink SL, Cookson BT (2007) Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol 9(11):2562–2570

    Article  CAS  Google Scholar 

  38. Lundberg U, Vinatzer U, Berdnik D et al (1999) Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes. J Bacteriol 181(11):3433–3437

    Article  CAS  Google Scholar 

  39. Chen LM, Kaniga K, Galan JE (1996) Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 21:1101–1115

    Article  CAS  Google Scholar 

  40. Jesenberger V, Procyk KJ, Yuan J et al (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med 192(7):1035–1046

    Article  CAS  Google Scholar 

  41. Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218

    Article  CAS  Google Scholar 

  42. Monack DM, Raupach B, Hromockyj AE et al (1996) Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 93(18):9833–9838

    Article  CAS  Google Scholar 

  43. Monack DM, Detweiler CS, Falkow S (2001) Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cell Microbiol 3(12):825–837

    Article  CAS  Google Scholar 

  44. van der Velden AW, Lindgren SW, Worley MJ et al (2000) Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun 68:5702–5709

    Article  Google Scholar 

  45. Coombes BK, Lowden MJ, Bishop JL et al (2007) SseL is a Salmonella-specific translocated effector integrated into the SsrB-controlled Salmonella pathogenicity island 2 type III secretion system. Infect Immun 75(2):574–580

    Article  CAS  Google Scholar 

  46. Le Negrate GFB, Welsh K, Loeffler M et al (2008) Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBalpha ubiquitination and modulates innate immune responses. J Immunol 180(7):5045–5056

    Article  Google Scholar 

  47. Rytkönen A, Poh J, Garmendia J et al (2007) SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A 104(9):3502–3507

    Article  CAS  Google Scholar 

  48. Gulig PA, Curtiss R 3rd (1987) Plasmid-associated virulence of Salmonella typhimurium. Infect Immun 55(12):2891–2901

    Article  CAS  Google Scholar 

  49. Koski P, Saarilahti H, Sukupolvi S et al (1992) A new alpha-helical coiled coil protein encoded by the Salmonella typhimurium virulence plasmid. J Biol Chem 267(17):12258–12265

    CAS  Google Scholar 

  50. Epstein SL, Tumpey TM, Misplon JA et al (2002) DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg Infect Dis 8(8):796–801

    Article  CAS  Google Scholar 

  51. Ulmer JB, Fu TM, Deck RR et al (1998) Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 72(7):5648–5653

    Article  CAS  Google Scholar 

  52. Bertani G (1951) Studies on lysogenesis. I The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300

    Article  CAS  Google Scholar 

  53. Kang HY, Dozois CM, Tinge SA et al (2002) Transduction-mediated transfer of unmarked deletion and point mutations through use of counterselectable suicide vectors. J Bacteriol 184(1):307–312

    Article  CAS  Google Scholar 

  54. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  55. Sedgwick JD, Holt PG (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57(1–3):301–309

    Article  CAS  Google Scholar 

  56. McCown MF, Pekosz A (2005) The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 79(6):3595–3605

    Article  CAS  Google Scholar 

  57. Schmieger H, Backhaus H (1976) Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet 143(3):307–309

    Article  CAS  Google Scholar 

  58. Roland K, Curtiss R 3rd, Sizemore D (1999) Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis 43(3):429–441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, W. (2021). Development of Antiviral Vaccine Utilizing Self-Destructing Salmonella for Antigen and DNA Vaccine Delivery. In: Lucas, A.R. (eds) Viruses as Therapeutics. Methods in Molecular Biology, vol 2225. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1012-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1012-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1011-4

  • Online ISBN: 978-1-0716-1012-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation