Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

  • 791 Accesses

Abstract

A full understanding of biomolecular function requires an analysis of both the dynamic properties of the system of interest and the identification of those dynamics that are required for function. We describe NMR methods based on metabolically directed specific isotope labeling for the identification of molecular disorder and/or conformational transitions on the RNA backbone ribose groups. These analyses are complemented by the use of synthetic covalently modified nucleotides constrained to a single sugar pucker, which allow functional assessment of dynamics by selectively removing a minor conformer identified by NMR from the structural ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoogstraten CG, Sumita M (2007) Structure-function relationships in RNA and RNP enzymes: Recent advances. Biopolymers 87:317–328

    Article  CAS  PubMed  Google Scholar 

  2. Lee TS, Radak BK, Harris ME et al (2016) A two-metal-ion-mediated conformational switching pathway for HDV ribozyme activation. ACS Catal 6:1853–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Legault P, Hoogstraten CG, Metlitzky E et al (1998) Order, dynamics, and metal binding in the lead-dependent ribozyme. J Mol Biol 284:325–335

    Article  CAS  PubMed  Google Scholar 

  4. Lemieux S, Chartrand P, Cedergren R et al (1998) Modeling active RNA structures using the intersection of conformational space: application to the lead-activated ribozyme. RNA 4:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murray JB, Dunham CM, Scott WG (2002) A pH-dependent conformational change, rather than the chemical step, appears to be rate-limiting in the hammerhead ribozyme cleavage reaction. J Mol Biol 315:121–130

    Article  CAS  PubMed  Google Scholar 

  7. Yajima R, Proctor DJ, Kierzek R et al (2007) A conformationally restricted guanosine analog reveals the catalytic relevance of three structures of an RNA enzyme. Chem Biol 14:23–30

    Article  CAS  PubMed  Google Scholar 

  8. Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc 94:8205–8212

    Article  CAS  PubMed  Google Scholar 

  9. Wijmenga SS, Van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387

    Article  CAS  Google Scholar 

  10. Al Hashimi HM, Walter NG (2008) RNA dynamics: it is about time. Curr Opin Struct Biol 18:321–329

    Article  Google Scholar 

  11. Bothe JR, Nikolova EN, Eichhorn CD et al (2011) Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 8:919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dethoff EA, Petzold K, Chugh J et al (2012) Visualizing transient low-populated structures of RNA. Nature 491:724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furtig B, Buck J, Richter C et al (2012) Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods Mol Biol 848:185–199

    Article  PubMed  Google Scholar 

  14. Latham MP, Brown DJ, Mccallum SA et al (2005) NMR methods for studying the structure and dynamics of RNA. Chembiochem 6:1492–1505

    Article  CAS  PubMed  Google Scholar 

  15. Johnson JE Jr, Julien KR, Hoogstraten CG (2006) Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA. J Biomol NMR 35:261–274

    Article  CAS  PubMed  Google Scholar 

  16. Hoogstraten CG, Johnson JE Jr (2008) Metabolic labeling: taking advantage of bacterial pathways to prepare spectroscopically useful isotope patterns in proteins and nucleic acids. Concepts Magn Resonan A 32:34–55

    Article  Google Scholar 

  17. Leblanc RM, Longhini AP, Tugarinov V et al (2018) NMR probing of invisible excited states using selectively labeled RNAs. J Biomol NMR 71:165–172

    Article  CAS  PubMed  Google Scholar 

  18. Longhini AP, Leblanc RM, Becette O et al (2016) Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucl Acids Res 44:e52

    Article  PubMed  Google Scholar 

  19. Johnson JE Jr, Hoogstraten CG (2008) Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using 13C NMR spin relaxation and specific isotope labeling. J Am Chem Soc 130:16757–16769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White NA, Sumita M, Marquez VE et al (2018) Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA 24:1542–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Julien KR, Sumita M, Chen P-H et al (2008) Conformationally restricted nucleotides as a probe of structure-function relationships in RNA. RNA 14:1632–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ketkar A, Zafar MK, Banerjee S et al (2012) A nucleotide-analogue-induced gain of function corrects the error-prone nature of human DNA polymerase iota. J Am Chem Soc 134:10698–10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maier MA, Choi Y, Gaus H et al (2004) Synthesis and characterization of oligonucleotides containing conformationally constrained bicyclo[3.1.0]hexane pseudosugar analogs. Nucleic Acids Res 32:3642–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marquez VE, Ezzitouni A, Siddiqui MA et al (1997) Conformational analysis of nucleosides constructed on a bicyclo[3.1.0]hexane template. Structure-antiviral activity analysis for the northern and southern hemispheres of the pseudorotational cycle. Nucleosides Nucleotides 16:1431–1434

    Article  CAS  Google Scholar 

  25. Saneyoshi H, Mazzini S, Avino A et al (2009) Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer. Nucleic Acids Res 37:5589–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Terrazas M, Avino A, Siddiqui MA et al (2011) A direct, efficient method for the preparation of siRNAs containing ribo-like North bicyclo[3.1.0]hexane pseudosugars. Org Lett 13:2888–2891

    Article  CAS  PubMed  Google Scholar 

  27. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161

    Article  CAS  PubMed  Google Scholar 

  28. Zhao B, Hansen AL, Zhang Q (2014) Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1rho) NMR spectroscopy. J Am Chem Soc 136:20–23

    Article  CAS  PubMed  Google Scholar 

  29. Zhao B, Zhang Q (2015) Measuring residual dipolar couplings in excited conformational states of nucleic acids by CEST NMR spectroscopy. J Am Chem Soc 137:13480–13483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palmer AG III (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  CAS  PubMed  Google Scholar 

  31. Palmer AG III, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106:1700–1719

    Article  CAS  PubMed  Google Scholar 

  32. Legault P, Pardi A (1997) Unusual dynamics and pKa shift at the active site of a lead-dependent ribozyme. J Am Chem Soc 119:6621–6628

    Article  CAS  Google Scholar 

  33. Hoogstraten CG, Legault P, Pardi A (1998) NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J Mol Biol 284:337–350

    Article  CAS  PubMed  Google Scholar 

  34. Batey RT, Battiste JL, Williamson JR (1995) Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol 261:300–322

    Article  CAS  PubMed  Google Scholar 

  35. Mckenna SA, Kim I, Puglisi EV et al (2007) Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat Protoc 2:3270–3277

    Article  CAS  PubMed  Google Scholar 

  36. Longhini AP, Leblanc RM, Dayie TK (2016) Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 103:11–17

    Article  CAS  PubMed  Google Scholar 

  37. Green MRS, J. (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  38. Kim I, Mckenna SA, Viani PE et al (2007) Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  40. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  PubMed  Google Scholar 

  41. Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, New York, NY

    Google Scholar 

  42. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  CAS  PubMed  Google Scholar 

  43. Hoogstraten CG, Wank JR, Pardi A (2000) Active site dynamics in the lead-dependent ribozyme. Biochemistry 39:9951–9958

    Article  CAS  PubMed  Google Scholar 

  44. Lukavsky PJ, Puglisi JD (2001) RNAPack: an integrated NMR approach to RNA structure determination. Methods 25:316–332

    Article  CAS  PubMed  Google Scholar 

  45. Kallansrud G, Ward B (1996) A comparison of measured and calculated single- and double-stranded oligodeoxynucleotide extinction coefficients. Anal Biochem 236:134–138

    Article  CAS  PubMed  Google Scholar 

  46. Stonehouse J, Clowes RT, Shaw GL et al (1995) Minimisation of sensitivity losses due to the use of gradient pulses in triple-resonance NMR of proteins. J Biomol NMR 5:226–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Victor Marquez and Dr. Ramon Eritja for helpful discussions and the U.S. National Science Foundation (MCB-1413356 to C.G.H.) and the Spanish Ministry of Economy (MINECO) (CTQ2017-84415-R to Ramon Eritja) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Hoogstraten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoogstraten, C.G., Terrazas, M., Aviñó, A., White, N.A., Sumita, M. (2021). Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation