Enhanced Molecular Dynamics Simulations of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Molecular dynamics simulations represent a powerful tool to gain insights into structural and dynamical features of biomolecular systems. Nevertheless, their recognized limitation in terms of achievable timescales becomes particularly severe when dealing with slow processes. In such cases, the employment of enhanced sampling methods, which allow accelerating the characterization of rare events in a timeframe consistent with conventional computational resources, results as crucial. In particular, such advanced techniques have proven highly valuable in the context of protein folding and, specifically, to explore the conformational ensemble spanned by intrinsically disordered proteins (IDPs). Here, we describe how to set up molecular dynamics simulations with one of these enhanced sampling approaches (namely, Parallel Tempering Metadynamics in the Well-Tempered Ensemble) using the NTAIL peptide as a test case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  CAS  PubMed  Google Scholar 

  2. Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103

    Article  CAS  PubMed  Google Scholar 

  3. Gibbs EB, Showalter SA (2015) Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry 54:1314–1326

    Article  CAS  PubMed  Google Scholar 

  4. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    Article  CAS  PubMed  Google Scholar 

  5. Uversky VN, Oldfield CJ, Midic U et al (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10:S1–S7

    Article  CAS  Google Scholar 

  6. Habchi J, Tompa P, Longhi S et al (2014) Introducing protein intrinsic disorder. Chem Rev 114:6561–6588

    Article  CAS  PubMed  Google Scholar 

  7. Varadi M, Vranken W, Guharoy M et al (2015) Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  9. Gunasekaran K, Tsai C-J, Kumar S et al (2003) Extended disordered proteins: targeting function with less scaffold. Trends Biochem Sci 28:81–85

    Article  CAS  PubMed  Google Scholar 

  10. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  11. Joshi P, Vendruscolo M (2015) Druggability of intrinsically disordered proteins BT. In: Felli IC, Pierattelli R (eds) Intrinsically disordered proteins studied by NMR spectroscopy. Advances in experimental medicine and biology, vol 870. Springer, Cham, p 383

    Chapter  Google Scholar 

  12. Recanatini M (2018) How dynamic docking simulations can help to tackle tough drug targets. Future Med Chem 10:2763–2765

    Article  CAS  PubMed  Google Scholar 

  13. Tompa P, Varadi M (2014) Predicting the predictive power of IDP ensembles. Structure 22:177–178

    Article  CAS  PubMed  Google Scholar 

  14. Masetti M, Rocchia W (2014) Molecular mechanics and dynamics: numerical tools to sample the configuration space. Front Biosci (Landmark Ed) 19:578–604

    Article  Google Scholar 

  15. De Vivo M, Masetti M, Bottegoni G et al (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  CAS  Google Scholar 

  16. Nettels D, Müller-Späth S, Küster F et al (2009) Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 106:20740–20745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merchant KA, Best RB, Louis JM et al (2007) Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A 104:1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voelz VA, Jäger M, Yao S et al (2012) Slow unfolded-state structuring in acyl-CoA binding protein folding revealed by simulation and experiment. J Am Chem Soc 134:12565–12577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Best RB, Mittal J (2010) Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J Phys Chem B 114:14916–14923

    Article  CAS  PubMed  Google Scholar 

  20. Piana S, Donchev AG, Robustelli P et al (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123

    Article  CAS  PubMed  Google Scholar 

  21. Ye W, Ji D, Wang W et al (2015) Test and evaluation of ff99IDPs force field for intrinsically disordered proteins. J Chem Inf Model 55:1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palazzesi F, Prakash MK, Bonomi M et al (2015) Accuracy of current all-atom force-fields in modeling protein disordered states. J Chem Theory Comput 11:2–7

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, MacKerell AD (2018) Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 48:40–48

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Song D, Lu H et al (2018) Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Chem Biol Drug Des 92:1722–1735

    Article  CAS  PubMed  Google Scholar 

  25. Robustelli P, Piana S, Shaw DE (2018) Develo** a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115:4758–4766

    Article  CAS  Google Scholar 

  26. Best RB, Zheng W, Mittal J (2014) Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 10:5113–5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abrams C, Bussi G (2014) Enhanced sampling in molecular dynamics using Metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163

    Article  CAS  Google Scholar 

  28. Camilloni C, Pietrucci F (2018) Advanced simulation techniques for the thermodynamic and kinetic characterization of biological systems. Adv Phys X 3:1477531

    Google Scholar 

  29. Laio A, Parrinello M (2002) Esca** free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    Article  PubMed  CAS  Google Scholar 

  31. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1:826–843

    Article  CAS  Google Scholar 

  32. Bussi G, Branduardi D (2015) Free-energy calculations with Metadynamics: theory and practice. In: Parrill AL, Lipkowitz KB (eds) Reviews in computational chemistry, vol 28. Springer, New York, p 1

    Google Scholar 

  33. Elvati P, Violi A (2012) Free energy calculation of Permeant–membrane interactions using molecular dynamics simulations. In: Reineke J (ed) Nanotoxicity: methods and protocols. Humana Press, Totowa, NJ, p 189

    Chapter  Google Scholar 

  34. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  35. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067

    Article  CAS  Google Scholar 

  36. Liu P, Kim B, Friesner RA et al (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci U S A 102:13749–13754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bussi G (2014) Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol Phys 112:379–384

    Article  CAS  Google Scholar 

  38. Bussi G, Gervasio FL, Laio A et al (2006) Free-energy landscape for β hairpin folding from combined parallel tempering and Metadynamics. J Am Chem Soc 128:13435–13441

    Article  CAS  PubMed  Google Scholar 

  39. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104:190601

    Article  CAS  PubMed  Google Scholar 

  40. Deighan M, Bonomi M, Pfaendtner J (2012) Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. J Chem Theory Comput 8:2189–2192

    Article  CAS  PubMed  Google Scholar 

  41. Bernetti M, Masetti M, Pietrucci F et al (2017) Structural and kinetic characterization of the intrinsically disordered protein SeV NTAIL through enhanced sampling simulations. J Phys Chem B 121:9572–9582

    Article  CAS  PubMed  Google Scholar 

  42. Skiadopoulos MH, Surman SR, Riggs JM et al (2002) Sendai virus, a murine Parainfluenza virus type 1, replicates to a level similar to human PIV1 in the upper and lower respiratory tract of African green monkeys and chimpanzees. Virology 297:153–160

    Article  CAS  PubMed  Google Scholar 

  43. Jensen MR, Houben K, Lescop E et al (2008) Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein. J Am Chem Soc 130:8055–8061

    Article  CAS  PubMed  Google Scholar 

  44. Barducci A, Bonomi M, Parrinello M (2010) Linking well-tempered Metadynamics simulations with experiments. Biophys J 98:44–46

    Article  CAS  Google Scholar 

  45. Barducci A, Bonomi M, Prakash MK et al (2013) Free-energy landscape of protein oligomerization from atomistic simulations. Proc Natl Acad Sci U S A 110:4708–4713

    Article  CAS  Google Scholar 

  46. Palazzesi F, Barducci A, Tollinger M et al (2013) The allosteric communication pathways in KIX domain of CBP. Proc Natl Acad Sci U S A 110:14237–14242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sutto L, Gervasio FL (2013) Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. Proc Natl Acad Sci U S A 110:10616–10621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lovera S, Morando M, Pucheta-Martinez E et al (2015) Towards a molecular understanding of the link between Imatinib resistance and kinase conformational dynamics. PLoS Comput Biol 11:e1004578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kuzmanic A, Sutto L, Saladino G et al (2017) Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations. Elife 6:e22175

    Article  PubMed  PubMed Central  Google Scholar 

  50. Granata D, Baftizadeh F, Habchi J et al (2015) The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Sci Rep 5:15449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossetti G, Musiani F, Abad E et al (2016) Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations. Phys Chem Chem Phys 18:5702–5706

    Article  CAS  PubMed  Google Scholar 

  52. Bellucci L, Bussi G, Di Felice R et al (2017) Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. Nanoscale 9:2279–2290

    Article  CAS  PubMed  Google Scholar 

  53. Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9:3878–3888

    Article  CAS  PubMed  Google Scholar 

  54. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  55. Tribello GA, Bonomi M, Branduardi D et al (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  56. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  57. Racine J (2006) Gnuplot 4.0: a portable interactive plotting utility. J Appl Econ 21:133–141

    Article  Google Scholar 

  58. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix−coil transition of polypeptides. J Phys Chem B 113:9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hess B, Bekker H, Berendsen HJC et al (1998) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  62. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  63. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  64. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101

    Article  CAS  Google Scholar 

  65. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  66. Pietrucci F, Laio A (2009) A collective variable for the efficient exploration of protein Beta-sheet structures: application to SH3 and GB1. J Chem Theory Comput 5:2197–2201

    Article  CAS  PubMed  Google Scholar 

  67. Vymětal J, Vondrášek J (2011) Gyration- and inertia-tensor-based collective coordinates for Metadynamics. Application on the conformational behavior of Polyalanine peptides and Trp-cage folding. J Phys Chem A 115:11455–11465

    Article  PubMed  CAS  Google Scholar 

  68. Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nadler W, Hansmann UHE (2008) Optimized explicit-solvent replica exchange molecular dynamics from scratch. J Phys Chem B 112:10386–10387

    Article  CAS  PubMed  Google Scholar 

  71. Bonomi M, Bussi G, Camilloni C et al (2019) Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods 16:670–673

    Google Scholar 

  72. Bonomi M, Barducci A, Parrinello M (2009) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30:1615–1621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fabio Pietrucci and Giovanni Bussi for their invaluable feedback and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cavalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Masetti, M., Bernetti, M., Cavalli, A. (2020). Enhanced Molecular Dynamics Simulations of Intrinsically Disordered Proteins. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation