Primers: Functional Genes and 16S rRNA Genes for Methanogens

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

To date, a great number of oligonucleotide probes/primers targeting phylogenetic markers of methanogenic archaea (methanogens), such as 16S rRNA and the gene for the α-subunit of methyl-coenzyme M reductase (mcrA), have been developed and used for the identification and quantification of individuals and groups of methanogens in environmental samples. These probes/primers were designed for different taxonomic levels of methanogens and have been used for studies in environmental microbiology as hybridization probes or PCR primers of qualitative and quantitative molecular techniques, such as high-throughput sequencing, quantitative PCR, fluorescence in situ hybridization (FISH), and rRNA cleavage method. In this chapter, we present a comprehensive list of known oligonucleotide probes/primers, which enable us to decipher methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of probes/primers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu YC, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  2. Schink B, Stams AJM (2013) In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes, 4th edn. Springer-Verlag, Berlin, pp 471–493

    Chapter  Google Scholar 

  3. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  CAS  PubMed  Google Scholar 

  4. Iino T, Mori K, Suzuki K (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and the emendation of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60:2563–2566

    Article  CAS  PubMed  Google Scholar 

  5. Sakai S, Conrad R, Liesack W et al (2010) Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen, isolated from Italian rice field soil. Int J Syst Evol Microbiol 60:2918–2923

    Article  CAS  PubMed  Google Scholar 

  6. Sakai S, Imachi H, Hanada S et al (2008) Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936

    Article  PubMed  Google Scholar 

  7. Bräuer S, Cadillo-Quiroz H, Ward RJ et al (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61:45–52

    Article  PubMed  CAS  Google Scholar 

  8. Cadillo-Quiroz H, Yavitt JB, Zinder SH (2009) Methanosphaerula palustris gen. nov., sp nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59:928–935

    Article  CAS  PubMed  Google Scholar 

  9. Krivushin KV, Shcherbakova VA, Petrovskaya LE et al (2010) Methanobacterium veterum sp nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60:455–459

    Article  CAS  PubMed  Google Scholar 

  10. Shcherbakova VA, Rivkina EM, Pecheritsyna S et al (2010) Methanobacterium arcticum sp.nov., methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61:144–147

    Article  PubMed  CAS  Google Scholar 

  11. Laloui-Carpentier W, Li T, Vigneron V et al (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 89:423–434

    Article  PubMed  Google Scholar 

  12. Doerfert SN, Reichlen M, Iyer P et al (2009) Methanolobus zinderi sp nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59:1064–1069

    Article  CAS  PubMed  Google Scholar 

  13. Mochimaru H, Tamaki H, Hanada S et al (2009) Methanolobus profundi sp nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59:714–718

    Article  CAS  PubMed  Google Scholar 

  14. Frey JC, Pell AN, Berthiaume R et al (2010) Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol 108:1982–1993

    CAS  PubMed  Google Scholar 

  15. Nazaries L, Murrell JC, Millard P et al (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  PubMed  Google Scholar 

  16. Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    Article  CAS  PubMed  Google Scholar 

  17. Ciais P, Sabine C, Bala G et al (2013). In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  18. Narihiro T, Kamagata Y (2013) Cultivating yet-to-be cultivated microbes: the challenge continues. Microbes Environ 28:163–165

    Article  PubMed  PubMed Central  Google Scholar 

  19. Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273–278

    Article  CAS  PubMed  Google Scholar 

  20. Sekiguchi Y (2006) Yet-to-be cultured microorganisms relevant to methane fermentation processes. Microbes Environ 21:1–15

    Article  Google Scholar 

  21. Tabatabaei M, Rahim RA, Abdullah N et al (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45:1214–1225

    Article  CAS  Google Scholar 

  22. Talbot G, Topp E, Palin MF et al (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537

    Article  CAS  PubMed  Google Scholar 

  23. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  PubMed  Google Scholar 

  24. Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb Biotechnol 4:585–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Narihiro T, Nobu MK, Kim NK et al (2014) The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ Microbiol. doi:10.1111/1462-2920.12616

    Google Scholar 

  26. Tamaki H, Wright CL, Li XZ et al (2011) Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS One 6:e25263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mondav R, Woodcroft BJ, Kim EH et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212

    Article  PubMed  CAS  Google Scholar 

  28. Friedrich MW (2005) Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Environ Microbiol 397:428–442

    CAS  Google Scholar 

  29. Hedderich R, Whitman WB (2013) In: Roesenberg E, DeLong EF, Lory S, Stackebrandt E, Thomson F (eds) The prokaryotes. Springer, Berlin, pp 635–662

    Chapter  Google Scholar 

  30. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  PubMed  Google Scholar 

  32. Garrity GM, Holt JG (2001) Phylum AII. Euryarchaeota phy. nov. Springer-Verlag, New York

    Google Scholar 

  33. Narihiro T, Terada T, Ohashi A et al (2009) Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method. ISME J 3:522–535

    Article  CAS  PubMed  Google Scholar 

  34. Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dridi B, Fardeau ML, Ollivier B et al (2012) Methanomassiliicoccus luminyensis gen. nov., sp nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    Article  CAS  PubMed  Google Scholar 

  36. Paul K, Nonoh JO, Mikulski L et al (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borrel G, Harris HM, Parisot N et al (2013) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1:e00453-13

    Article  PubMed  PubMed Central  Google Scholar 

  38. Borrel G, Harris HMB, Toney W et al (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194:6944–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iino T, Tamaki H, Tamazawa S et al (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250

    Article  PubMed  PubMed Central  Google Scholar 

  40. Borrel G, Parisot N, Harris HMB et al (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chouari R, Le Paslier D, Daegelen P et al (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115

    Article  CAS  PubMed  Google Scholar 

  42. Lv W, Zhang W, Yu Z (2013) Evaluation of system performances and microbial communities of two temperature-phased anaerobic digestion systems treating dairy manure. Bioresour Technol 143:431–438

    Article  CAS  PubMed  Google Scholar 

  43. Sekiguchi Y, Kamagata Y (2004) In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, UK, pp 361–384

    Google Scholar 

  44. Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3, REVIEWS0003

    Google Scholar 

  45. Lehmann-Richter S, Grosskopf R, Liesack W et al (1999) Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots. Environ Microbiol 1:159–166

    Article  CAS  PubMed  Google Scholar 

  46. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  47. Miyashita A, Mochimaru H, Kazama H et al (2009) Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 297:31–37

    Article  CAS  PubMed  Google Scholar 

  48. Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648

    Article  CAS  PubMed  Google Scholar 

  49. Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  50. Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Skillman LC, Evans PN, Naylor GE et al (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285

    Article  CAS  PubMed  Google Scholar 

  52. Embley TM, Finlay BJ, Thomas RH et al (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138:1479–1487

    Article  CAS  PubMed  Google Scholar 

  53. Wright ADG, Pimm C (2003) Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods 55:337–349

    Article  CAS  PubMed  Google Scholar 

  54. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Marchesi JR, Weightman AJ, Cragg BA et al (2001) Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol 34:221–228

    Article  CAS  PubMed  Google Scholar 

  56. Casamayor EO, Muyzer G, Pedros-Alio C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquat Microb Ecol 25:237–246

    Article  Google Scholar 

  57. Stahl DA, Amann R (1991) In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248

    Google Scholar 

  58. Dojka MA, Hugenholtz P, Haack SK et al (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Barns SM, Fundyga RE, Jeffries MW et al (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A 91:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu ZT, Garcia-Gonzalez R, Schanbacher FL et al (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens denaturing by Archaea-specific PCR and gradient gel electrophoresis. Appl Environ Microbiol 74:889–893

    Article  CAS  PubMed  Google Scholar 

  61. Hook SE, Northwood KS, Wright ADG et al (2009) Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol 75:374–380

    Article  CAS  PubMed  Google Scholar 

  62. Reysenbach AL, Pace NR (1995) In: Robb FT, Place AR (eds) Archaea: a laboratory manual. Cold Spring Harbour Press, Cold Spring Harbor, pp 101–107

    Google Scholar 

  63. Raskin L, Stromley JM, Rittmann BE et al (1994) Group-specific 16S ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hales BA, Edwards C, Ritchie DA et al (1996) Isolation and identification of methanogen-specific DNA from blanket bog feat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jurgens G, Glockner F, Amann R et al (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    CAS  PubMed  Google Scholar 

  66. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  CAS  PubMed  Google Scholar 

  68. Yu Y, Lee C, Kim J et al (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  PubMed  Google Scholar 

  69. Achenbach LA, Woese CR (1995) In: Sowers KR, Schreier HJ (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 521–523

    Google Scholar 

  70. Watanabe T, Asakawa S, Nakamura A et al (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol Lett 232:153–163

    Article  CAS  PubMed  Google Scholar 

  71. Huber JA, Mark Welch D, Morrison HG et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  PubMed  Google Scholar 

  72. Franke-Whittle IH, Goberna M, Pfister V et al (2009) Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods 79:279–288

    Article  CAS  PubMed  Google Scholar 

  73. Gantner S, Andersson AF, Alonso-Saez L et al (2011) Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 84:12–18

    Article  CAS  PubMed  Google Scholar 

  74. Alonso-Saez L, Andersson A, Heinrich F et al (2011) High archaeal diversity in Antarctic circumpolar deep waters. Environ Microbiol Rep 3:689–697

    Article  CAS  PubMed  Google Scholar 

  75. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7

    Google Scholar 

  76. Tymensen LD, Beauchemin KA, McAllister TA (2012) Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 158:1808–1817

    Article  CAS  PubMed  Google Scholar 

  77. Shigematsu T, Tang YQ, Kawaguchi H et al (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558

    Article  CAS  PubMed  Google Scholar 

  78. Imachi H, Sakai S, Sekiguchi Y et al (2008) Methanolinea tarda gen. nov., sp nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58:294–301

    Article  CAS  PubMed  Google Scholar 

  79. Armougom F, Henry M, Vialettes B et al (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One 4:e7125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Banning N, Brock F, Fry JC et al (2005) Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol 7:947–960

    Article  CAS  PubMed  Google Scholar 

  81. Ovreas L, Forney L, Daae FL et al (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sakai S, Imachi H, Sekiguchi Y et al (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu JH, Chuang HP, Hsu MH et al (2013) Use of a hierarchical oligonucleotide primer extension approach for multiplexed relative abundance analysis of methanogens in anaerobic digestion systems. Appl Environ Microbiol 79:7598–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Franke-Whittle IH, Goberna M, Insam H (2009) Design and testing of real-time PCR primers for the quantification of Methanoculleus, Methanosarcina, Methanothermobacter, and a group of uncultured methanogens. Can J Microbiol 55:611–616

    Article  CAS  PubMed  Google Scholar 

  85. Chen S, Zhu Z, Park J et al (2014) Development of Methanoculleus-specific real-time quantitative PCR assay for assessing methanogen communities in anaerobic digestion. J Appl Microbiol 116:1474–1481

    Article  CAS  PubMed  Google Scholar 

  86. Hori T, Haruta S, Ueno Y et al (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yanagita K, Kamagata Y, Kawaharasaki M et al (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64:1737–1742

    Article  CAS  PubMed  Google Scholar 

  88. Tang YQ, Shigematsu T, Morimura S et al (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164

    Article  CAS  PubMed  Google Scholar 

  89. Brauer SL, Cadillo-Quiroz H, Yashiro E et al (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194

    Article  PubMed  CAS  Google Scholar 

  90. Yashiro Y, Sakai S, Ehara M et al (2011) Methanoregula formicica sp. nov., a novel methane-producing archaeon isolated from methanogenic sludge. Int J Syst Evol Microbiol 61:53–59

    Article  CAS  PubMed  Google Scholar 

  91. Wu JH, Wu FY, Chuang HP et al (2013) Community and proteomic analysis of methanogenic consortia degrading terephthalate. Appl Environ Microbiol 79:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  93. Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresour Technol 97:69–76

    Article  CAS  PubMed  Google Scholar 

  94. Brazelton WJ, Sogin ML, Baross JA (2010) Multiple scales of diversification within natural populations of archaea in hydrothermal chimney biofilms. Environ Microbiol Rep 2:236–242

    Article  CAS  PubMed  Google Scholar 

  95. Crocetti G, Murto M, Bjornsson L (2006) An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J Microbiol Methods 65:194–201

    Article  CAS  PubMed  Google Scholar 

  96. Zheng D, Raskin L (2000) Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb Ecol 39:246–262

    CAS  PubMed  Google Scholar 

  97. Sawayama S, Tada C, Tsukahara K et al (2004) Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng 97:65–70

    Article  CAS  PubMed  Google Scholar 

  98. Mori K, Iino T, Suzuki K et al (2012) Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 78:3416–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Falz KZ, Holliger C, Grosskopf R et al (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65:2402–2408

    CAS  Google Scholar 

  100. Rocheleau S, Greer CW, Lawrence JR et al (1999) Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65:2222–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang GS, Jiang N, Liu XL et al (2008) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sorensen AH, Torsvik VL, Torsvik T et al (1997) Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes. Appl Environ Microbiol 63:3043–3050

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Imachi H, Aoi K, Tasumi E et al (2011) Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5:1913–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dawson KS, Strapoc D, Huizinga B et al (2012) Quantitative fluorescence in situ hybridization analysis of microbial consortia from a biogenic gas field in Alaska’s Cook Inlet basin. Appl Environ Microbiol 78:3599–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee HS, Lee JC, Lee IK et al (2011) Associations among organochlorine pesticides, Methanobacteriales, and obesity in Korean women. PLoS One 6:e27773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75:6524–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McCartney CA, Bull ID, Dewhurst RJ (2013) Chemical markers for rumen methanogens and methanogenesis. Animal 7(Suppl 2):409–417

    Article  PubMed  Google Scholar 

  108. Dridi B, Henry M, El Khechine A et al (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Nercessian O, Prokofeva M, Lebedinski A et al (2004) Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high-temperature environments. Environ Microbiol 6:170–182

    Article  CAS  PubMed  Google Scholar 

  110. Kemnitz D, Kolb S, Conrad R (2005) Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ Microbiol 7:553–565

    Article  CAS  PubMed  Google Scholar 

  111. Dridi B, Henry M, Richet H et al (2012) Age-related prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome. APMIS 120:773–777

    Article  PubMed  Google Scholar 

  112. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568

    Article  CAS  PubMed  Google Scholar 

  113. Narihiro T, Terada T, Kikuchi K et al (2009) Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ 24:88–96

    Article  PubMed  Google Scholar 

  114. Bräuer SL, Yashiro E, Ueno NG et al (2006) Characterization of acid-tolerant H-2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57:206–216

    Article  PubMed  CAS  Google Scholar 

  115. Zhang GS, Tian JQ, Jiang N et al (2008) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860

    Article  CAS  PubMed  Google Scholar 

  116. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Markowitz VM, Chen IM, Palaniappan K et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567

    Article  CAS  PubMed  Google Scholar 

  118. Luton PE, Wayne JM, Sharp RJ et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    Article  CAS  PubMed  Google Scholar 

  119. Springer E, Sachs MS, Woese CR et al (1995) Partial gene-sequences for the a-subunit of methyl coenzyme-M reductase (McrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559

    Article  CAS  PubMed  Google Scholar 

  120. Shigematsu T, Tang YQ, Kobayashi T et al (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gagnon N, Barret M, Topp E et al (2011) A novel fingerprint method to assess the diversity of methanogens in microbial systems. FEMS Microbiol Lett 325:115–122

    Article  CAS  PubMed  Google Scholar 

  122. Simankova MV, Kotsyurbenko OR, Lueders T et al (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318

    Article  PubMed  Google Scholar 

  123. Colwell FS, Boyd S, Delwiche ME et al (2008) Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin. Appl Environ Microbiol 74:3444–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nunoura T, Oida H, Miyazaki J et al (2008) Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol 64:240–247

    Article  CAS  PubMed  Google Scholar 

  125. Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6:e20453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Petersen SO, Hojberg O, Poulsen M et al (2014) Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J Appl Microbiol 117:160–172

    Article  CAS  PubMed  Google Scholar 

  128. Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kubota K, Ohashi A, Imachi H et al (2006) Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH). J Microbiol Methods 66:521–528

    Article  CAS  PubMed  Google Scholar 

  131. Kawakami S, Hasegawa T, Imachi H et al (2012) Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes. J Microbiol Methods 88:218–223

    Article  CAS  PubMed  Google Scholar 

  132. Juottonen H, Galand PE, Yrjala K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921

    Article  CAS  PubMed  Google Scholar 

  133. Lueders T, Chin KJ, Conrad R et al (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Article  CAS  PubMed  Google Scholar 

  134. Qiao JT, Qiu YL, Yuan XZ et al (2013) Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour Technol 143:512–518

    Article  CAS  PubMed  Google Scholar 

  135. Kim W, Cho K, Lee S et al (2013) Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors. Bioresour Technol 145:48–56

    Article  CAS  PubMed  Google Scholar 

  136. **e ZF, Wang ZW, Wang QY et al (2014) An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification. Bioresour Technol 161:29–39

    Article  CAS  PubMed  Google Scholar 

  137. Smith AL, Skerlos SJ, Raskin L (2013) Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res 47:1655–1665

    Article  CAS  PubMed  Google Scholar 

  138. Kuroda K, Hatamoto M, Nakahara N et al (2015) Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microb Ecol 69:586–596

    Article  CAS  PubMed  Google Scholar 

  139. Bialek K, Cysneiros D, O’Flaherty V (2013) Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations. Archaea, 346171

    Google Scholar 

  140. Bialek K, Kim J, Lee C et al (2011) Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res 45:1298–1308

    Article  CAS  PubMed  Google Scholar 

  141. Bialek K, Kumar A, Mahony T et al (2012) Microbial community structure and dynamics in anaerobic fluidized-bed and granular sludge-bed reactors: influence of operational temperature and reactor configuration. Microb Biotechnol 5:738–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jang HM, Park SK, Ha JH et al (2013) Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production. Bioresour Technol 145:80–89

    Article  CAS  PubMed  Google Scholar 

  143. Lee C, Kim J, Hwang K et al (2009) Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Res 43:157–165

    Article  CAS  PubMed  Google Scholar 

  144. Lee C, Kim J, Shin SG et al (2010) Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl Microbiol Biotechnol 87:1963–1973

    Article  CAS  PubMed  Google Scholar 

  145. O’Reilly J, Lee C, Chinalia F et al (2010) Microbial community dynamics associated with biomass granulation in low-temperature (15 degrees C) anaerobic wastewater treatment bioreactors. Bioresour Technol 101:6336–6344

    Article  PubMed  CAS  Google Scholar 

  146. Siggins A, Enright AM, O’Flaherty V (2011) Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 degrees C and 15 degrees C. Water Res 45:2452–2462

    Article  CAS  PubMed  Google Scholar 

  147. Williams J, Williams H, Dinsdale R et al (2013) Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management. Bioresour Technol 140:234–242

    Article  CAS  PubMed  Google Scholar 

  148. Yilmaz V, Ince-Yilmaz E, Yilmazel YD et al (2014) Is aceticlastic methanogen composition in full-scale anaerobic processes related to acetate utilization capacity? Appl Microbiol Biotechnol 98:5217–5226

    Article  CAS  PubMed  Google Scholar 

  149. Demirer SU, Taskin B, Demirer GN et al (2013) The effect of managing nutrients in the performance of anaerobic digesters of municipal wastewater treatment plants. Appl Microbiol Biotechnol 97:7899–7907

    Article  CAS  PubMed  Google Scholar 

  150. Tale VP, Maki JS, Struble CA et al (2011) Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res 45:5249–5256

    Article  CAS  PubMed  Google Scholar 

  151. Traversi D, Villa S, Acri M et al (2011) The role of different methanogen groups evaluated by Real-Time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express 1:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Traversi D, Villa S, Lorenzi E et al (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manage 111:173–177

    Article  CAS  PubMed  Google Scholar 

  153. Kampmann K, Ratering S, Baumann R et al (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413

    Article  CAS  PubMed  Google Scholar 

  154. Nercessian D, Upton M, Lloyd D et al (1999) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett 173:425–429

    Article  CAS  Google Scholar 

  155. Narihiro T, Hori T, Nagata O et al (2011) The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci Biotechnol Biochem 75:1727–1734

    Article  CAS  PubMed  Google Scholar 

  156. Juottonen H, Galand PE, Tuittila ES et al (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557

    Article  CAS  PubMed  Google Scholar 

  157. Galand PE, Fritze H, Yrjala K (2003) Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5:1133–1143

    Article  PubMed  Google Scholar 

  158. Galand PE, Saarnio S, Fritze H et al (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449

    Article  CAS  PubMed  Google Scholar 

  159. Freitag TE, Prosser JI (2009) Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl Environ Microbiol 75:6679–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Freitag TE, Toet S, Ineson P et al (2010) Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol 73:157–165

    CAS  PubMed  Google Scholar 

  161. Zhang H, DiBaise JK, Zuccolo A et al (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106:2365–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vianna ME, Conrads G, Gomes BP et al (2009) T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol Immunol 24:417–422

    Article  CAS  PubMed  Google Scholar 

  163. Vianna ME, Holtgraewe S, Seyfarth I et al (2008) Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. J Bacteriol 190:3779–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sustr V, Chronakova A, Semanova S et al (2014) Methane production and methanogenic archaea in the digestive tracts of millipedes (diplopoda). PLoS One 9:e102659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Kusar D, Avgustin G (2010) Molecular profiling and identification of methanogenic archaeal species from rabbit caecum. FEMS Microbiol Ecol 74:623–630

    Article  CAS  PubMed  Google Scholar 

  166. Su Y, Bian GR, Zhu ZG et al (2014) Early methanogenic colonisation in the faeces of Meishan and Yorkshire piglets as determined by pyrosequencing analysis. Archaea 2014, 547908

    Google Scholar 

  167. Ufnar JA, Ufnar DF, Wang SY et al (2007) Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes. Appl Environ Microbiol 73:5209–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sirohi SK, Chaudhary PP, Singh N et al (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523:161–166

    Article  CAS  PubMed  Google Scholar 

  169. Danielsson R, Schnurer A, Arthurson V et al (2012) Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl Environ Microbiol 78:6172–6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhou M, Hernandez-Sanabria E, Guan LL (2010) Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76:3776–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tatsuoka N, Mohammed N, Mitsumori M et al (2004) Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett Appl Microbiol 39:257–260

    Article  CAS  PubMed  Google Scholar 

  172. Denman SE, Tomkins N, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322

    Article  CAS  PubMed  Google Scholar 

  173. Kang SH, Evans P, Morrison M et al (2013) Identification of metabolically active proteobacterial and archaeal communities in the rumen by DNA- and RNA-derived 16S rRNA gene. J Appl Microbiol 115:644–653

    Article  CAS  PubMed  Google Scholar 

  174. Sun W, Zhang FL, He LM et al (2014) Pyrosequencing reveals diverse microbial community associated with the Zoanthid Palythoa australiae from the South China Sea. Microb Ecol 67:942–950

    Article  CAS  PubMed  Google Scholar 

  175. Brazelton WJ, Ludwig KA, Sogin ML et al (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci U S A 107:1612–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dhillon A, Lever M, Lloyd KG et al (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nercessian O, Bienvenu N, Moreira D et al (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132

    Article  CAS  PubMed  Google Scholar 

  178. Nunoura T, Takaki Y, Kazama H et al (2012) Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27:382–390

    Article  PubMed  PubMed Central  Google Scholar 

  179. Mobberley JM, Ortega MC, Foster JS (2012) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 14:82–100

    Article  CAS  PubMed  Google Scholar 

  180. Zhang Y, Chen LJ, Sun RH et al (2014) Effect of wastewater disposal on the bacterial and archaeal community of sea sediment in an industrial area in China. FEMS Microbiol Ecol 88:320–332

    Article  CAS  PubMed  Google Scholar 

  181. Hugoni M, Taib N, Debroas D et al (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110:6004–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zeleke J, Lu SL, Wang JG et al (2013) Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River estuary, China. Microb Ecol 66:257–267

    Article  CAS  PubMed  Google Scholar 

  183. Antony CP, Murrell JC, Shouche YS (2012) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81:43–51

    Article  CAS  PubMed  Google Scholar 

  184. Chaudhary PP, Wright AD, Brablcova L et al (2014) Dominance of Methanosarcinales phylotypes and depth-wise distribution of methanogenic community in fresh water sediments of Sitka Stream from Czech Republic. Curr Microbiol 69:809–816

    Article  CAS  PubMed  Google Scholar 

  185. Nolla-Ardevol V, Strous M, Sorokin DY et al (2012) Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes. J Biotechnol 161:167–173

    Article  CAS  PubMed  Google Scholar 

  186. Casamayor EO, Massana R, Benlloch S et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  187. Kan JJ, Clingenpeel S, Macur RE et al (2011) Archaea in Yellowstone Lake. ISME J 5:1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang QY, Jiang HC, Briggs BR et al (2013) Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiol Ecol 85:452–464

    Article  CAS  PubMed  Google Scholar 

  189. Ramakrishnan B, Lueders T, Dunfield PF et al (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186

    Article  CAS  Google Scholar 

  190. Singh A, Singh RS, Upadhyay SN et al (2012) Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil. FEMS Microbiol Ecol 82:118–134

    Article  CAS  PubMed  Google Scholar 

  191. Aschenbach K, Conrad R, Rehakova K et al (2013) Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  192. Allan J, Ronholm J, Mykytczuk NCS et al (2014) Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ Microbiol Rep 6:136–144

    Article  CAS  PubMed  Google Scholar 

  193. Kemnitz D, Chin KJ, Bodelier P et al (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6:449–461

    Article  CAS  PubMed  Google Scholar 

  194. Castro H, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 70:6559–6568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Alain K, Holler T, Musat F et al (2006) Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol 8:574–590

    Article  CAS  PubMed  Google Scholar 

  196. Sharma R, Ryan K, Hao X et al (2011) Real-time quantification of mcrA, pmoA for methanogen, methanotroph estimations during composting. J Environ Qual 40:199–205

    Article  CAS  PubMed  Google Scholar 

  197. Callbeck CM, Sherry A, Hubert CR et al (2013) Improving PCR efficiency for accurate quantification of 16S rRNA genes. J Microbiol Methods 93:148–152

    Article  CAS  PubMed  Google Scholar 

  198. Gray ND, Sherry A, Grant RJ et al (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dridi B, Khelaifia S, Fardeau ML et al (2012) Tungsten-enhanced growth of Methanosphaera stadtmanae. BMC Res Notes 5:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lane DJ (1991) 16S/23S rRNA sequencing. Wiley, Chichester

    Google Scholar 

  201. Smith JM, Green SJ, Kelley CA et al (2008) Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol 10:386–394

    Article  CAS  PubMed  Google Scholar 

  202. Jerman V, Metje M, Mandic-Mulec I et al (2009) Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures. Biogeosciences 6:1127–1138

    Article  CAS  Google Scholar 

  203. Inagaki F, Tsunogai U, Suzuki M et al (2004) Characterization of C-1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nunoura T, Oida H, Toki T et al (2006) Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol Ecol 57:149–157

    Article  CAS  PubMed  Google Scholar 

  205. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170

    Article  CAS  PubMed  Google Scholar 

  206. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  PubMed  Google Scholar 

  207. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  CAS  PubMed  Google Scholar 

  210. Wu JH, Liu WT (2007) Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res 35:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Dahllof I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Article  CAS  PubMed  Google Scholar 

  212. Blazewicz SJ, Barnard RL, Daly RA et al (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Poulsen LK, Ballard G, Stahl DA (1993) Use of ribosomal-RNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59:1354–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Raskin L, Poulsen LK, Noguera DR et al (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Stahl DA, Flesher B, Mansfield HR et al (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Griffin ME, McMahon KD, Mackie RI et al (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57:342–355

    Article  CAS  PubMed  Google Scholar 

  218. Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36:3203–3210

    Article  CAS  PubMed  Google Scholar 

  219. McMahon KD, Zheng DD, Stams AJM et al (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87:823–834

    Article  CAS  PubMed  Google Scholar 

  220. Raskin L, Amann RI, Poulsen LK et al (1995) Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms. Water Sci Technol 31:261–272

    Article  CAS  Google Scholar 

  221. Zheng D, Angenent LT, Raskin L (2006) Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes. Biotechnol Bioeng 94:458–472

    Article  CAS  PubMed  Google Scholar 

  222. Kong YH, **a Y, Seviour R et al (2013) Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 84:302–315

    Article  CAS  PubMed  Google Scholar 

  223. Horn MA, Matthies C, Kusel K et al (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kleikemper J, Pombo SA, Schroth MH et al (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 71:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Boonapatcharoen N, Meepian K, Chaiprasert P et al (2007) Molecular monitoring of microbial population dynamics during operational periods of anaerobic hybrid reactor treating cassava starch wastewater. Microb Ecol 54:21–30

    Article  CAS  PubMed  Google Scholar 

  226. Chen CL, Wu JH, Tseng IC et al (2009) Characterization of active microbes in a full-scale anaerobic fluidized bed reactor treating phenolic wastewater. Microbes Environ 24:144–153

    Article  PubMed  Google Scholar 

  227. Plumb JJ, Bell J, Stuckey DC (2001) Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol 67:3226–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sekiguchi Y, Kamagata Y, Nakamura K et al (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Shinzato N, Watanabe I, Meng XY et al (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 54:627–636

    Article  PubMed  Google Scholar 

  230. **a Y, Kong YH, Seviour R et al (2014) Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J Appl Microbiol 116:14–22

    Article  CAS  PubMed  Google Scholar 

  231. Nakamura K, Terada T, Sekiguchi Y et al (2006) Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl Environ Microbiol 72:6907–6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kubota K, Imachi H, Kawakami S et al (2008) Evaluation of enzymatic cell treatments for application of CARD-FISH to methanogens. J Microbiol Methods 72:54–59

    Article  CAS  PubMed  Google Scholar 

  233. Kawakami S, Kubota K, Imachi H et al (2010) Detection of single copy genes by two-pass tyramide signal amplification fluorescence in situ hybridization (Two-Pass TSA-FISH) with single oligonucleotide probes. Microbes Environ 25:15–21

    Article  PubMed  Google Scholar 

  234. Uyeno Y, Sekiguchi Y, Sunaga A et al (2004) Sequence-specific cleavage of small-subunit (SSU) rRNA with oligonucleotides and RNase H: a rapid and simple approach to SSU rRNA-based quantitative detection of microorganisms. Appl Environ Microbiol 70:3650–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Narihiro T, Terada T, Ohashi A et al (2012) Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res 46:2167–2175

    Article  CAS  PubMed  Google Scholar 

  236. Sekiguchi Y, Uyeno Y, Sunaga A et al (2005) Sequence-specific cleavage of 16S rRNA for rapid and quantitative detection of particular groups of anaerobes in bioreactors. Water Sci Technol 52:107–113

    CAS  PubMed  Google Scholar 

  237. Bhatta R, Uyeno Y, Tajima K et al (2009) Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci 92:5512–5522

    Article  CAS  PubMed  Google Scholar 

  238. Yamada T, Kikuchi K, Yamauchi T et al (2011) Ecophysiology of uncultured filamentous anaerobes belonging to the phylum KSB3 that cause bulking in methanogenic granular sludge. Appl Environ Microbiol 77:2081–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nai YH, Zemb O, Gutierrez-Zamora ML et al (2012) Capillary electrophoresis ribosomal RNA single-stranded conformation polymorphism: a new approach for characterization of low-diversity microbial communities. Anal Bioanal Chem 404:1897–1906

    Article  CAS  PubMed  Google Scholar 

  240. Sulej AA, Tuszynska I, Skowronek KJ et al (2012) Sequence-specific cleavage of the RNA strand in DNA-RNA hybrids by the fusion of ribonuclease H with a zinc finger. Nucleic Acids Res 40:11563–11570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. He ZL, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  242. Loy A, Lehner A, Lee N et al (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Goberna M, Gadermaier M, Garcia C et al (2010) Adaptation of methanogenic communities to the cofermentation of cattle excreta and olive mill wastes at 37 degrees C and 55 degrees C. Appl Environ Microbiol 76:6564–6571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Walter A, Knapp BA, Farbmacher T et al (2012) Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microb Biotechnol 5:717–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Wang FP, Zhou HY, Meng J et al (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci U S A 106:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Martinez RJ, Wu CH, Beazley MJ et al (2014) Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments. PLoS One 9:e100383

    Article  PubMed  PubMed Central  Google Scholar 

  247. Tsiamis G, Katsaveli K, Ntougias S et al (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159:609–627

    Article  PubMed  Google Scholar 

  248. Radajewski S, Ineson P, Parekh NR et al (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  249. Manefield M, Whiteley AS, Griffiths RI et al (2002) RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Liu FH, Conrad R (2010) Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50 degrees C. Environ Microbiol 12:2341–2354

    CAS  PubMed  Google Scholar 

  251. Lu YH, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  252. Lu YH, Lueders T, Friedrich MW et al (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:326–336

    Article  CAS  PubMed  Google Scholar 

  253. Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Li TL, Mazeas L, Sghir A et al (2009) Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904

    Article  CAS  PubMed  Google Scholar 

  255. Hamberger A, Horn MA, Dumont MG et al (2008) Anaerobic consumers of monosaccharides in a moderately acidic fen. Appl Environ Microbiol 74:3112–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhu WJ, Lu HH, Hill J et al (2014) 13C pulse-chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres. FEMS Microbiol Ecol 87:746–756

    Article  CAS  PubMed  Google Scholar 

  257. Gan YL, Qiu QF, Liu PF et al (2012) Syntrophic oxidation of propionate in rice field soil at 15 and 30 degrees C under methanogenic conditions. Appl Environ Microbiol 78:4923–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu PF, Qiu QF, Lu YH (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77:3884–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Rui JP, Qiu QF, Lu YH (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77:264–273

    Article  CAS  PubMed  Google Scholar 

  260. Barret M, Gagnon N, Kalmokoff ML et al (2013) Identification of Methanoculleus spp. as active methanogens during anoxic incubations of swine manure storage tank samples. Appl Environ Microbiol 79:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Beckmann S, Lueders T, Kruger M et al (2011) Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl Environ Microbiol 77:3749–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Chaudhary PP, Brablcova L, Buriankova I et al (2013) Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97:7553–7562

    Article  CAS  PubMed  Google Scholar 

  263. Liu WT, Chan OC, Fang HHP (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36:1767–1775

    Article  CAS  PubMed  Google Scholar 

  264. Vavilin VA, Qu X, Mazeas L et al (2008) Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94:593–605

    Article  CAS  PubMed  Google Scholar 

  265. Wu JH, Liu WT, Tseng IC et al (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147:373–382

    Article  CAS  PubMed  Google Scholar 

  266. Harmsen HJM, Kengen HMP, Akkermans ADL et al (1996) Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62:1656–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Harmsen HJM, Kengen KMP, Akkermans ADL et al (1995) Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichments cultures. Syst Appl Microbiol 18:67–73

    Article  CAS  Google Scholar 

  268. Imachi H, Sekiguchi Y, Kamagata Y et al (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Seedorf H, Kittelmann S, Henderson G et al (2014) RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2:e494

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Narihiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Narihiro, T., Sekiguchi, Y. (2015). Primers: Functional Genes and 16S rRNA Genes for Methanogens. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_138

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_138

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50427-7

  • Online ISBN: 978-3-662-50428-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation