Native defects and impurities in GaN

  • Chapter
  • First Online:
Advances in Solid State Physics 35

Part of the book series: Advances in Solid State Physics ((ASSP,volume 35))

Abstract

Applying state-of-the-art first-principles, calculations we study atomic geometry, electronic structure, and energetics for all native defects and for several donor impurities (O, C, Si) and GaN. An analysis of these results gives direct insight into the defect concentrations and the solubility of impurities with respect to the growth conditions (temperature, chemical potentials) and into possible mechanisms for passivation and compensation. Particularly, we discuss in detail the role of the nitrogen vacancy, which is commonly assumed to be the source for the “auto-do**” of GaN. Our results show that GaN has distinctively different defect properties compared to more “traditional” semiconductors such as Si, GaAs or ZnSe. This is explained in terms of the large mismatch in the atomic radii of Ga and N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Davis, Proceedings IEEE 79, 702 (1991).

    Article  ADS  Google Scholar 

  2. S. Strite and H. Morkoc, J. Vac. Sci. Technol. 10, 1237 (1992).

    Article  Google Scholar 

  3. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys 76, 1363 (1994).

    Article  ADS  Google Scholar 

  4. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  ADS  Google Scholar 

  5. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys 28, L2112 (1989)

    Article  ADS  Google Scholar 

  6. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys 31, 1258 (1992).

    Article  ADS  Google Scholar 

  7. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Article  ADS  Google Scholar 

  8. M. Ilegems and H. C. Montgomery, J. Phys. Chem. Solids 34, 885 (1973).

    Article  ADS  Google Scholar 

  9. W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, Chrystal Res. & Technol. 18, 383 (1983).

    Article  Google Scholar 

  10. B.-C. Chung and M. Gershenzon, Appl. Phys. Lett. 72, 651 (1992).

    Google Scholar 

  11. D. W. Jenkins and J. D. Dow, Phys. Rev. B 39, 3317 (1989).

    Article  ADS  Google Scholar 

  12. G. A. Baraff and M. Schlüter, Phys. Rev. B 28, 2296 (1983).

    Article  ADS  Google Scholar 

  13. Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. Lett. 52, 1128 (1984).

    Article  ADS  Google Scholar 

  14. R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, Phys. Rev. Lett. 54, 360 (1985).

    Article  ADS  Google Scholar 

  15. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).

    Article  ADS  Google Scholar 

  16. D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, Phys. Rev. Lett. 66, 648 (1991).

    Article  ADS  Google Scholar 

  17. J. E. Northrup and S. B. Zhang, Phys. Rev. B 47, 6791 (1993).

    Article  ADS  Google Scholar 

  18. C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B 47, 9425 (1993).

    Article  ADS  Google Scholar 

  19. G.-X. Qian, R. M. Martin, and D. J. Chadi, Phys. Rev. B 38, 7649 (1992).

    Article  ADS  Google Scholar 

  20. D. B. Laks, C. G. Van de Walle, G. F. Neumark, P. E. Blöchl, and S. T. Pantelides, Phys. Rev. B 45, 10965 (1992).

    Article  ADS  Google Scholar 

  21. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Article  ADS  Google Scholar 

  23. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  ADS  Google Scholar 

  24. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  25. R. Stumpf and M. Scheffler, Comp. Phys. Commun. 79, 447 (1994).

    Article  ADS  Google Scholar 

  26. J. Neugebauer and C. G. Van de Walle, to be published.

    Google Scholar 

  27. J. Neugebauer and C. G. Van de Walle, in Materials Research Society Symposia Proceedings, edited by C. H. Carter Jr., G. Gilbenblat, S. Nakamura, and R. J. Nemanich (Materials Research Society, Pittsburgh, Pennsylavania, 1994), Vol. 339, p. 687.

    Google Scholar 

  28. V. Fiorentini, M. Methfessel, and M. Scheffler, Phys. Rev. B 48, 1739 (1992).

    Google Scholar 

  29. D. W. Jenkins, J. D. Dow, and M. H. Tsai, Appl. Phys. Lett. 72, 4130 (1992).

    Google Scholar 

  30. T. L. Tansley and R. J. Egan, Phys. Rev. B 45, 10942 (1992).

    Article  ADS  Google Scholar 

  31. J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).

    Article  ADS  Google Scholar 

  32. J. E. Northrup and S. B. Zhang, Phys. Rev. B 50, 4962 (1994).

    Article  ADS  Google Scholar 

  33. A. Garcia and J. E. Nortrup, Phys. Rev. Lett. 74, 1131 (1995).

    Article  ADS  Google Scholar 

  34. P. Boguslawski, E. Briggs, and J. Bernholc, in The Physics of Semiconductors, edited by D. J. Lockwood (Materials Research Society, World Scientific, Singapore, 1994), Vol. 3.

    Google Scholar 

  35. R. W. G. Wyckoff, Crystal structures (Interscience Publishers, New York, 1963), Vol. 1

    Google Scholar 

  36. S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett. 66 1249 (1994).

    Article  ADS  Google Scholar 

  37. T. Ogino and M. Aoki, Jpn. J. Appl. Phys 19, 2395 (1980).

    Article  ADS  Google Scholar 

  38. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, Jr., M. Asif Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, submitted to Phys. Rev. B.

    Google Scholar 

  39. W. Götz, N. Johnson, R. A. Street, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1340 (1995).

    Article  ADS  Google Scholar 

  40. F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Neugebauer, J., Van de Walle, C.G. (1996). Native defects and impurities in GaN. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107538

Download citation

  • DOI: https://doi.org/10.1007/BFb0107538

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation