Measuring the optical properties of two-dimensional photonic crystals in the near infrared

  • Conference paper
  • First Online:
Confined Photon Systems

Abstract

We present measurements of two-dimensional photonic crystals in a waveguided geometry, using photoluminescence from emitters inserted in the guiding heterostructure as an internal light source. A complete set of measurements is given, including quantitative evaluation of the transmission, reflection and also diffraction coefficients of the samples. Their behaviour is shown to follow mostly the pure 2D theory. Capitalizing on the measured properties, we fabricated one-dimensional cavities. The cavity modes are probed through transmission measurement. The measured quality factor leads to an estimation of the reflectivity of the mirror of the order of 95%. We also designed and fabricated disk cavities surrounded by circular Bragg mirrors. The resonances are probed by exciting the photoluminescence of quantum dots placed inside the cavity. Resonances with quality factors up to 650 are found corresponding to the confined Quasi-Radial Modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.

    Article  ADS  Google Scholar 

  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light. Princeton, NJ: Princeton University Press, 1995.

    MATH  Google Scholar 

  3. E. M. Purcell, “Spontaneous emission probabilities at ratio frequencies,” Phys. Rev., vol. 69, pp. 681, 1946.

    Article  Google Scholar 

  4. C. C. Cheng, A. Scherer, V. Arbet-Engels, and E. Yablonovitch, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B, vol. 14, pp. 4110, 1996.

    Article  Google Scholar 

  5. T. Krauss, Y. P. Song, S. Thoms, C. D. W. Wilkinson, and R. M. Delarue, “Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs,” Electronics Letters, vol. 30, pp. 1444, 1994.

    Article  Google Scholar 

  6. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature, vol. 383, pp. 699–702, 1996.

    Article  ADS  Google Scholar 

  7. For references, see in this volume the various lecture notes on microcavities.

    Google Scholar 

  8. A. A. Maradudin and A. R. McGurn, “Photonic band structure of a truncated, two-dimensional, periodic dielectric medium,” J. Opt. Soc. Am. B, vol. 10, pp. 307, 1993.

    Article  ADS  Google Scholar 

  9. D. Cassagne, C. Jouanin, and D. Bertho, “Photonic band gaps in two-dimensional graphite structure,” Phys. Rev. B, vol. 52, pp. R2217, 1995.

    Google Scholar 

  10. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett., vol. 61, pp. 495, 1992.

    Article  ADS  Google Scholar 

  11. J. M. Gérard, A. Izraël, J. Y. Marzin, R. Padjen, and F. R. Ladan, “Photonic bandgap of two-dimensional dielectric crystals,” Solid-State Electronics, vol. 37, pp. 1341, 1994.

    Article  Google Scholar 

  12. V. Berger, I. Pavel, E. Ducloux, and F. Lafon, “Finite-element Maxwell’s equations modelling of etched air/dielectric Bragg mirrors,” J. Appl. Phys., vol. 82, pp. 5300–5304, 1997.

    Article  ADS  Google Scholar 

  13. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic crystal microcavities,” J. Opt. Soc. Am. B, vol. 15, pp. 1155–1159, 1998.

    Article  ADS  Google Scholar 

  14. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré, and U. Oesterle, “Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals,” Appl. Phys. Lett., vol. 71, pp. 738–740, 1997.

    Article  ADS  Google Scholar 

  15. J.-Y. Marzin, M. N. Charasse, and B. Sermage, “Optical investigation of a new type of valence-band configuration in InxGal-xAs-GaAs strained superlattices,” Physical Review B, vol. 31, pp. 8298–8301, 1985.

    Article  ADS  Google Scholar 

  16. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths,” Phys. Rev. Lett., vol. 79, pp. 4147–4150, 1997.

    Article  ADS  Google Scholar 

  17. M. Born and E. Wolf, Principles of Optics, Oxford: Pergamon Press, 1980.

    Google Scholar 

  18. K. Sakoda, “Transmittance and Bragg reflectivity of two-dimensional photonic lattices,” Phys. Rev. B, vol. 52, pp. 8992–9002, 1995.

    Article  ADS  Google Scholar 

  19. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, D. Cassagne, C. Jouanin, R. Houdré, U. Oesterle, and V. Bardinal, “Diffraction efficiency and guided light control by two-dimensional photonic-band-gap lattices,” IEEE J. Quantum Electron., to be published, 1999.

    Google Scholar 

  20. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett., vol. 47, pp. 1099–1101, 1985.

    Article  ADS  Google Scholar 

  21. J. Y. Marzin, J. M. Gérard, A. Izraël, and D. Barrier, “Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs,” Phys. Rev. Lett., vol. 73, pp. 716–719, 1994.

    Article  ADS  Google Scholar 

  22. J. M. Gérard, J. Y. Marzin, G. Zimmermann, A. Ponchet, O. Cabrol, D. Barrier, B. Jusserand, and B. Sermage, “InAs/GaAs quantum boxes obtained by self-organized growth: intrinsic electronic properties and applications.,” Solid State Electronics, vol. 40, pp. 807–814, 1996.

    Article  Google Scholar 

  23. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using InAs quantum dots emission,” Phys Rev. B, vol. 59, pp. 1649–1652, 1999.

    Article  ADS  Google Scholar 

  24. U. Oesterle, R. P. Stanley, R. Houdré, M. Gailhanou, and M. Ilegems, “Molecular beam epitaxy of an ultrahigh finesse microcavity,” J. Cryst. Growth, vol. 150, pp. 1313–1317, 1995.

    Article  ADS  Google Scholar 

  25. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, “Demonstration of a cavity mode between two-dimensional photonic-crystal mirrors,” Electronics Letters, vol. 33, pp. 1978–1980, 1997.

    Article  Google Scholar 

  26. C. J. M. Smith, T. F. Krauss, R. D. L. Rue, D. Labilloy, H. Benisty, C. Weisbuch, U. Oesterle, and R. Houdré: “In-plane microcavity resonators with two-dimensional photonic bandgap mirrors,” EE Proc.-Optoelectron., Special issue on Photonic Crystals, vol. 145, pp. 373–378, 1998.

    Google Scholar 

  27. C. J. M. Smith, T. F. Krauss, R. D. L. Rue, D. Labilloy, H. Benisty, C. Weisbuch, U. Oesterle, and R. Houdré, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett., vol. 35, pp. 228–230, 1999.

    Article  Google Scholar 

  28. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdré, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett., vol. 73, pp. 1314–1316, 1998.

    Article  ADS  Google Scholar 

  29. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett., vol. 63, 1993.

    Google Scholar 

  30. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp. 289, 1992.

    Article  ADS  Google Scholar 

  31. A. A. Tovar and G. H. Clark, “Concentric-circle-grating, surface emitting laser beam propoagation in complex optical systems,” J. Opt. Soc. Am. A, vol. 14, pp. 3333–3340, 1997.

    Article  ADS  Google Scholar 

  32. J. M. Gérard, D. Barrier, J.-Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett., vol. 69, pp. 449, 1996.

    Article  ADS  Google Scholar 

  33. S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly-dispersive photonic band-gap prism,” Optics Letters, vol. 21, pp. 1771–1773, 1996.

    Article  ADS  Google Scholar 

  34. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science, vol. 282, pp. 274–276, 1998.

    Article  ADS  Google Scholar 

  35. R. D. Meade, A. Deveny, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys., vol. 75, pp. 4753–4755, 1994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Benisty Claude Weisbuch École Polytechnique Jean-Michel Gérard Romuald Houdré John Rarity

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Labilloy, D. et al. (1999). Measuring the optical properties of two-dimensional photonic crystals in the near infrared. In: Benisty, H., Weisbuch, C., Polytechnique, É., Gérard, JM., Houdré, R., Rarity, J. (eds) Confined Photon Systems. Lecture Notes in Physics, vol 531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104391

Download citation

  • DOI: https://doi.org/10.1007/BFb0104391

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66435-2

  • Online ISBN: 978-3-540-48313-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation