Meta-HFMD: A Hierarchical Feature Fusion Malware Detection Framework via Multi-task Meta-learning

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2023)

Abstract

With the proliferation of malware, malware detection techniques have become more critical to protect the security and privacy of users. While existing malware detection techniques have achieved superior accuracy and detection rates, most of these techniques require a large number of labeled samples for training. In general, assembling a large amount of reliable data is still expensive, time-consuming, and even impossible. These malware detection techniques do not achieve good results on a small number of labeled samples and do not have the capability to detect new or variant malware. Therefore, it is necessary to investigate solutions for detecting malware in the few-shot scenario. This paper proposes a hierarchical feature fusion malware detection framework based on multi-task meta-learning, namely Meta-HFMD. The proposed framework first adopts a hierarchical feature fusion approach to learn hierarchical spatial traffic features from packet-level and flow-level. Then, it constructs an efficient multi-task malware detection model based on model-agnostic meta-learning (MAML), which can detect malware with tiny labeled samples. Experimental results demonstrate that Meta-HFMD achieves satisfactory results in the few-shot malware detection task, both in single-platform and cross-platform environments, and its performance metrics outperform other baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AltaeTran, H., Ramsundar, B., Pappu, A.S., Pande, V.: Low data drug discovery with one-shot learning. ACS Cent. Sci. 3(4), 283–293 (2017)

    Article  Google Scholar 

  2. Bill, K.: Dataset 20 D2 (2020). https://drive.google.com/drive/folders/1-I3a3lM6v_ANU6uu_AUmpNYt7rGu3kzt

  3. Bo, L., et al.: An approach based on the improved SVM algorithm for identifying malware in network traffic. Secur. Commun. Netw. 2021, 1–14 (2021)

    Google Scholar 

  4. Rong, C., Gou, G., Hou, C., Li, Z., **ong, G., Guo, L.: UMVD-FSL: unseen malware variants detection using few-shot learning. In: 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, pp. 1–8. IEEE (2021)

    Google Scholar 

  5. Chai, Y., Du, L., Qiu, J., Yin, L., Tian, Z.: Dynamic prototype network based on sample adaptation for few-shot malware detection. IEEE Trans. Knowl. Data Eng. 35(5), 4754–4766 (2023)

    Google Scholar 

  6. Chelsea, F., Abbeel, P., Sergey, L.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  7. Chen, R., Li, Y., Fang, W.: Android malware identification based on traffic analysis. In: Sun, X., Pan, Z., Bertino, E. (eds.) ICAIS 2019. LNCS, vol. 11632, pp. 293–303. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24274-9_26

    Chapter  Google Scholar 

  8. Conti, M., Khandhar, S., Vinod, P.: A few-shot malware classification approach for unknown family recognition using malware feature visualization. Comput. Secur. 122, 862–887 (2022)

    Article  Google Scholar 

  9. Einy, S., Oz, C., Navaei, Y.D.: The anomaly-and signature-based ids for network security using hybrid inference systems. Math. Probl. Eng. 2021, 1–10 (2021)

    Article  Google Scholar 

  10. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)

    Google Scholar 

  11. Hung, L., Quang, P., Doyen, S., Steven, C.: URLNet: learning a URL representation with deep learning for malicious URL detection. ar**v preprint ar**v:1802.03162 (2018)

  12. Ignatov, A., et al.: AI benchmark: all about deep learning on smartphones in 2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, pp. 3617–3635. IEEE (2019)

    Google Scholar 

  13. Khammas, B.M.: Ransomware detection using random forest technique. ICT Express. 6(4), 325–331 (2020)

    Article  Google Scholar 

  14. Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward develo** a systematic approach to generate benchmark android malware datasets and classification. In: 2018 International Carnahan Conference on Security Technology (ICCST), Bangalore, India, pp. 1–7. IEEE (2018)

    Google Scholar 

  15. Li, W., Bao, H., Zhang, X.Y., Li, L.: Amdetector: detecting large-scale and novel android malware traffic with meta-learning. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2022. LNCS, vol. 13353, pp. 387–401. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_33

    Chapter  Google Scholar 

  16. Liu, J., et al.: Deep anomaly detection in packet payload. Neurocomputing 485, 205–218 (2022)

    Article  Google Scholar 

  17. Mahindru, A., Sangal, A.: MLDroid-framework for android malware detection using machine learning techniques. Neural Comput. Appl. 33(10), 5183–5240 (2021)

    Article  Google Scholar 

  18. Marcus, G.: Deep learning: a critical appraisal. ar**v preprint ar**v:1801.00631 (2018)

  19. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, pp. 1–7 (2011)

    Google Scholar 

  20. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)

    Article  Google Scholar 

  21. Sharan, A., Radhika, K.: Machine learning based solution for detecting malware android applications. Mach. Learn. 4(3), 664–668 (2020)

    Google Scholar 

  22. Stratosphere: Stratosphere laboratory datasets (2015). https://www.stratosphereips.org/datasets-overview

  23. Thrun, S., Pratt, L.: Learning to learn: introduction and overview. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, pp. 3–17. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5529-2_1

    Chapter  Google Scholar 

  24. Uddin, M., Rahman, A.A., Uddin, N., Memon, J., Alsaqour, R.A., Kazi, S.: Signature-based multi-layer distributed intrusion detection system using mobile agents. Int. J. Netw. Secur. 15(1), 79–87 (2013)

    Google Scholar 

  25. Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q.: Image-based malware classification using ensemble of CNN architectures (IMCEC). Comput. Secur. 92, 731–748 (2020)

    Article  Google Scholar 

  26. Vasudevan, A., Yerraballi, R.: Spike: engineering malware analysis tools using unobtrusive binary-instrumentation. In: Proceedings of the 29th Australasian Computer Science Conference, Hobart, Australia, vol. 48, pp. 311–320. ACM (2006)

    Google Scholar 

  27. Vu, L.N., Jung, S.: AdMat: a CNN-on-matrix approach to android malware detection and classification. IEEE Access 9, 39680–39694 (2021)

    Article  Google Scholar 

  28. Wang, W., et al.: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2017)

    Article  Google Scholar 

  29. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, pp. 712–717. IEEE (2017)

    Google Scholar 

  30. Wang, Z., Tian, J., Qin, J., Fang, H., Chen, L.: A few-shot learning-based siamese capsule network for intrusion detection with imbalanced training data. Comput. Intell. Neurosci. 2021, 1–17 (2021)

    Article  Google Scholar 

  31. Xu, C., Shen, J., Du, X.: A method of few-shot network intrusion detection based on meta-learning framework. IEEE Trans. Inf. Forensics Secur. 15, 3540–3552 (2020)

    Article  Google Scholar 

  32. Yang, M., Chen, X., Luo, Y., Zhang, H.: An android malware detection model based on DT-SVM. Secur. Commun. Netw. 2020, 1–11 (2020)

    Article  Google Scholar 

  33. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  34. Yude, B., Zhenchang**ng, **aohongLi, Zhiyong, F., Duoyuan, M.: Unsuccessful story about few shot malware family classification and siamese network to the rescue. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, South Korea, pp. 1560–1571. IEEE (2020)

    Google Scholar 

  35. Zhijie, T., Peng, W., Junfeng, W.: Convprotonet: deep prototype induction towards better class representation for few-shot malware classification. Appl. Sci. 10(8), 28–47 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (U19B2028, U22B2061), the National Science and Technology Major Project of the Ministry of Science and Technology of China (2022YFB4300603), the Sichuan Science and Technology Program (2023YFG0151) and the Development of a Big Data-based Platform for Analyzing the Coupling Relationship of Strip Production Processes Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Bai, X., Liu, Q., Lan, T., Zhou, L., Zhou, T. (2024). Meta-HFMD: A Hierarchical Feature Fusion Malware Detection Framework via Multi-task Meta-learning. In: Yang, H., Lu, R. (eds) Frontiers in Cyber Security. FCS 2023. Communications in Computer and Information Science, vol 1992. Springer, Singapore. https://doi.org/10.1007/978-981-99-9331-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9331-4_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9330-7

  • Online ISBN: 978-981-99-9331-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation