Network Pruning via Explicit Information Migration

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14474))

Included in the following conference series:

  • 431 Accesses

Abstract

Neural network pruning is a widely used approach for reducing the inference cost of deep models in order to deploy on resource-limited settings. However, current pruning works lack attention to information migration from pruned to the remaining part of the Deep Neural Network, and on balancing model performance and compression rate. On these two issues, in this paper, we propose a novel \(\textbf{E}\)xplicit \(\textbf{I}\)nformation \(\textbf{M}\)igration network \(\textbf{P}\)runing (EIMP) algorithm. Specifically (1) the constrained gradient update method transfers valid information from redundant networks to the preserved, and (2) the newly designed \(\lambda \)-decay regularization method learns the trade-off between the performance and penalty item. Experiments show that our EIMP algorithm achieves state-of-the-art performance on several datasets with various benchmark network architectures. Notably, EIMP achieves \(+1.54\%\) better than SOTA on ImageNet.

Work done during the internship at OPPO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T.Y., et al.: Only train once: a one-shot neural network training and pruning framework. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  2. Chin, T.W., Ding, R.Z., Zhang, C., Marculescu, D.: Towards efficient model compression via learned global ranking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1518–1528 (2020)

    Google Scholar 

  3. Ding, X.H., Hao, T.X., et al.: Resrep: Lossless CNN pruning via decoupling remembering and forgetting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4510–4520 (2021)

    Google Scholar 

  4. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. ar**v preprint ar**v:1803.03635 (2018)

  5. Gao, S.Q., Huang, F.H., Cai, W.D., Huang, H.: Network pruning via performance maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9270–9280 (2021)

    Google Scholar 

  6. Guo, Y., Yuan, H., Tan, J.C., et al.: GDP: stabilized neural network pruning via gates with differentiable polarization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5239–5250 (2021)

    Google Scholar 

  7. Han, S., Pool, J., et al.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  8. Hassibi, B., et al.: Optimal brain surgeon and general network pruning. In: IEEE International Conference on Neural Networks, pp. 293–299. IEEE (1993)

    Google Scholar 

  9. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, Y., Kang, G.L., et al.: Soft filter pruning for accelerating deep convolutional neural networks. ar**v preprint ar**v:1808.06866 (2018)

  11. He, Y., Liu, P., Wang, Z.W., Hu, Z.L., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

    Google Scholar 

  12. He, Y., et al.: Learning filter pruning criteria for deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2009–2018 (2020)

    Google Scholar 

  13. Hou, Z.J., Qin, M.H., et al.: Chex: channel exploration for CNN model compression. ar**v preprint ar**v:2203.15794 (2022)

  14. Howard, A.G., Zhu, M.L., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. ar**v preprint ar**v:1704.04861 (2017)

  15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report 0, University of Toronto, Toronto, Ontario (2009)

    Google Scholar 

  16. Li, B., Wu, B., Su, J., Wang, G.: EagleEye: fast sub-net evaluation for efficient neural network pruning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 639–654. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_38

    Chapter  Google Scholar 

  17. Li, Y.C., Lin, S.H., et al.: Towards compact CNNs via collaborative compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6438–6447 (2021)

    Google Scholar 

  18. Li, Y.W., Gu, S.H., et al.: Group sparsity: the hinge between filter pruning and decomposition for network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8018–8027 (2020)

    Google Scholar 

  19. Lin, M.B., Ji, R.R., et al.: Hrank: filter pruning using high-rank feature map. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1529–1538 (2020)

    Google Scholar 

  20. Liu, Z., Li, J.G., et al.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  21. Liu, L.Y., et al.: Group fisher pruning for practical network compression. In: International Conference on Machine Learning, pp. 7021–7032. PMLR (2021)

    Google Scholar 

  22. Liu, Z., et al.: Rethinking the value of network pruning. ar**v preprint ar**v:1810.05270 (2018)

  23. Liu, Z.C., et al.: MetaPruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  24. Miao, L., et al.: Learning pruning-friendly networks via frank-Wolfe: one-shot, any-sparsity, and no retraining. In: International Conference on Learning Representations (2021)

    Google Scholar 

  25. Park, J.H., et al.: Dynamic structure pruning for compressing CNNs. ar**v:2303.09736 (2023)

  26. Russakovsky, O., Deng, J., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  27. Shen, M.Y., Yin, H.X., et al.: Structural pruning via latency-saliency knapsack. ar**v preprint ar**v:2210.06659 (2022)

  28. Tang, Y.H., et al.: Scientific control for reliable neural network pruning. Scop. Adv. Neural. Inf. Process. Syst. 33, 10936–10947 (2020)

    Google Scholar 

  29. Wang, H., Qin, C., et al.: Neural pruning via growing regularization. ar**v preprint ar**v:2012.09243 (2020)

  30. Wang, N.G., Liu, C.C., et al.: Deep compression of pre-trained transformer models. Adv. Neural. Inf. Process. Syst. 35, 14140–14154 (2022)

    Google Scholar 

  31. Wang, Z., Li, C.C., Wang, X.Y.: Convolutional neural network pruning with structural redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14913–14922 (2021)

    Google Scholar 

  32. Yang, H.C., Gui, S.P., Zhu, Y.H., Liu, J.: Automatic neural network compression by sparsity-quantization joint learning: A constrained optimization-based approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178–2188 (2020)

    Google Scholar 

  33. Yu, S.X., Mazaheri, A., Jannesari, A.: Auto graph encoder-decoder for neural network pruning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6362–6372 (2021)

    Google Scholar 

  34. Zhang, M., et al.: Weighted mutual learning with diversity-driven model compression. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  35. Zhang, Y.F., et al.: Exploration and estimation for model compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 487–496 (2021)

    Google Scholar 

  36. Zheng, S., et al.: Fast-and-light stochastic ADMM. In: IJCAI, pp. 2407–2613 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Hu, D., Zheng, Z. (2024). Network Pruning via Explicit Information Migration. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14474. Springer, Singapore. https://doi.org/10.1007/978-981-99-9119-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9119-8_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9118-1

  • Online ISBN: 978-981-99-9119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation