Sparse Frequency Representation Using Autocorrelation of Variational Mode Functions to Detect Compound Fault in Rotating Machines

  • Conference paper
  • First Online:
Vibration Engineering and Technology of Machinery, Volume II (VETOMAC 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 153))

  • 87 Accesses

Abstract

A gearbox is a torque transmitting unit, in other words, a nonlinear dynamic system, consisting of gear pairs, bearings, and shafts. In a vibration signal, effect of gear tooth faults reflects modulations and appears as sidebands in frequency spectrum. Similarly, bearing faults exhibit modulations too. Thus, when multiple faults termed as compound faults occurring in bearing simultaneously, the sidebands in the resulting vibration signal will be difficult to investigate, due to interference, and hence, specialized techniques are required to solve such problems. An investigation considering the compound fault occurring in a rotating machine is presented in this work. A fault detection approach based on variational mode decomposition and autocorrelation is proposed in this paper for compound faults. VMD demodulates the vibration signal thereby attenuating the effect of spurious noise; however, the low-frequency component related to individual fault is unidentifiable. Therefore, autocorrelation analysis and estimation of correlation coefficient of the extracted variational mode functions (VMFs) was performed followed by the sparsity analysis using Gini Index, Hoyer Index, and \({\mathrm{l}}_{2}/{\mathrm{l}}_{1}\) norm of the most sensitive VMF to exhibit the fault. It was noted that the proposed approach attempts to solve the problem of complex oscillation characteristics, and mutual interference between multiple bearing faults. The result suggests that the proposed approach is more effective in diagnosing the compound fault.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu M, Pan X, Feng Z, Fang M. A method to diagnose compound fault of rolling bearing with ITD-AF. J. Vibroeng. 2021;23(3):559–71. https://doi.org/10.21595/jve.2020.21476

  2. Liu B, Liu B, Dai Q, Liu H. A review of bearing fault diagnosis for wind turbines. In: IOP Conference Series: Earth and Environmental Science; Nov 17–19,2020. https://doi.org/10.1088/1755-1315/675/1/012094

  3. Rai A, Upadhyay SH. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol Int. 2016;96:289–306. https://doi.org/10.1016/j.triboint.2015.12.037.

    Article  Google Scholar 

  4. Sharma V. A review on vibration-based fault diagnosis techniques for wind turbine gearboxes operating under nonstationary conditions. J Inst Eng India Ser C. 2021;102:507–23. https://doi.org/10.1007/s40032-021-00666-y.

    Article  Google Scholar 

  5. Sharma V, Raghuwanshi NK, Jain AK. Sensitive sub-band selection criteria for empirical wavelet transform to detect bearing fault based on vibration signals. J Vib Eng Technol. 2021. https://doi.org/10.1007/s42417-021-00316-8.

    Article  Google Scholar 

  6. Fan J, Qi Y, Gao X, Li Y, Wang L. Compound fault diagnosis of rolling element bearings using multipoint sparsity–multipoint optimal minimum entropy deconvolution adjustment and adaptive resonance-based signal sparse decomposition. J Vib Control. 2021;27(11–12):1212–30. https://doi.org/10.1177/1077546320938199.

    Article  MathSciNet  Google Scholar 

  7. Randall RB, Antoni J. Rolling element bearing diagnostics—a tutorial. Mech Syst Signal Process. 2011;25(2):485–520.

    Article  Google Scholar 

  8. Feldman M. Hilbert transform in vibration analysis. Mech Syst Signal Process. 2011;25(3):735–802.

    Article  Google Scholar 

  9. Junsheng C, Dejie Y, Yu Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mech Syst Signal Process. 2007;21(2):668–77.

    Article  Google Scholar 

  10. Qiu H, Lee J, Lin J, Yu G. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vib. 2006;289:1066–90.

    Article  Google Scholar 

  11. Yan R, Gao RX. Multi-scale envelo** spectrogram for vibration analysis in bearing defect diagnosis. Tribol Int. 2009;42(2):293–302.

    Article  Google Scholar 

  12. Peng ZK, Peter WT, Chu FL. A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Signal Process. 2005;19(5):974–88.

    Article  Google Scholar 

  13. Du Q, Yang S. Application of the EMD method in the vibration analysis of ball bearings. Mech Syst Signal Process. 2007;21(6):2634–44.

    Article  Google Scholar 

  14. Yan R, Gao RX, Chen X. Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 2014;96:1–15. https://doi.org/10.1016/j.sigpro.2013.04.015.

    Article  Google Scholar 

  15. Ni Q, Ji JC, Feng K, Halkon B. A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis. Mech Syst Signal Process. 2022;164: 108216. https://doi.org/10.1016/j.ymssp.2021.108216.

    Article  Google Scholar 

  16. Wang Y, Markert R, **ang J, Zheng W. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech Syst Signal Process. 2015;60:243–51. https://doi.org/10.1016/j.ymssp.2015.02.020.

    Article  Google Scholar 

  17. Duan R, Liao Y, Wang S. An adaptive morphological analysis method and its application for bearing fault diagnosis. IEEE Trans Instrum Meas. 2021. https://doi.org/10.1109/TIM.2021.3072116.

    Article  Google Scholar 

  18. Sun RB, Du FP, Yang ZB, Chen XF, Gryllias K. Cyclostationary analysis of irregular statistical cyclicity and extraction of rotating speed for bearing diagnostics with speed fluctuations. IEEE Trans Instrum Meas. 2021;70:1–11. https://doi.org/10.1109/TIM.2021.3069381.

    Article  Google Scholar 

  19. Yang C, Yang J, Zhang S, Liu H. Extracting weak multi-frequency signal in heavy colored noise. J Braz Soc Mech Sci Eng. 2020;42(11):1–12. https://doi.org/10.1007/s40430-020-02674-y.

    Article  Google Scholar 

  20. Nikula RP, Karioja K, Pylvänäinen M, Leiviskä K. Automation of low-speed bearing fault diagnosis based on autocorrelation of time domain features. Mech Syst Signal Process. 2020;138: 106572. https://doi.org/10.1016/j.ymssp.2019.106572.

    Article  Google Scholar 

  21. Chegini SN, Manjili MJ, Bagheri A. New fault diagnosis approaches for detecting the bearing slight degradation. Meccanica. 2020;55(1):261–86. https://doi.org/10.1007/s11012-019-01116-x.

    Article  MathSciNet  Google Scholar 

  22. Jiao J, Yue J, Pei D, Hu Z. Application of feature fusion using coaxial vibration signal for diagnosis of rolling element bearings. Shock Vibr. 2020;1–14. https://doi.org/10.1155/2020/8831723

  23. Wang H, Wu F, Zhang L. Fault diagnosis of rolling bearings based on improved empirical mode decomposition and fuzzy C-means algorithm. Traitement du Signal. 2021;38(2);395–400. https://doi.org/10.18280/ts.380217

  24. He Z, Chen G, Hao T, Teng C, Hou M, Cheng Z. Weak fault detection method of rolling bearing based on testing signal far away from fault source. J. Mech. Sci. Technol. 2020;34(3):1–14. https://doi.org/10.1007/s12206-020-0206-4

  25. Shah R, Azarian M. Fault detection in bearings using autocorrelation. Int. J. COMADEM. 2017 Dec 14;20(4).

    Google Scholar 

  26. El Morsy M, Achtenová G. Rolling bearing fault diagnosis techniques-autocorrelation and cepstrum analyses. In: 2015 23rd Mediterranean Conference on Control and Automation (MED) 2015 Jun. IEEE, pp. 328–34.

    Google Scholar 

  27. Hurley N, Rickard S. Comparing measures of sparsity. IEEE Trans Inf Theory. 2009;55(10):4723–41. https://doi.org/10.1109/TIT.2009.2027527.

    Article  MathSciNet  Google Scholar 

  28. Miao Y, Zhao M, Hua J. Research on sparsity indexes for fault diagnosis of rotating machinery. Measurement. 2020;158: 107733. https://doi.org/10.1016/j.measurement.2020.107733.

    Article  Google Scholar 

  29. Zhao M, Lin J, Miao Y, Xu X. Feature mining and health assessment for gearboxes using run-up/coast-down signals. Sensors. 2016;16(11):1837. https://doi.org/10.3390/s16111837.

    Article  Google Scholar 

  30. Wang D. Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients. Mech Syst Signal Process. 2018;1(108):360–8. https://doi.org/10.1016/j.ymssp.2018.02.034.

    Article  Google Scholar 

  31. Miao Y, Zhao M, Lin J. Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification. Meas Sci Technol. 2017;28(12): 125001. https://doi.org/10.1088/1361-6501/aa8a57.

    Article  Google Scholar 

  32. Meng J, Wang H, Zhao L, Yan R. Adaptive sparse denoising and periodicity weighted spectrum separation for compound bearing fault diagnosis. Meas Sci Technol. 2021;32(8): 085011.

    Article  Google Scholar 

  33. Dibaj A, Ettefagh MM, Hassannejad R, Ehghaghi MB. A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults. Expert Syst Appl. 2021;167: 114094.

    Article  Google Scholar 

  34. Chen B, Peng F, Wang H, Yu Y. Compound fault identification of rolling element bearing based on adaptive resonant frequency band extraction. Mech Mach Theory. 2020;154: 104051.

    Article  Google Scholar 

  35. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process. 2013;62(3):531–44. https://doi.org/10.1109/TSP.2013.2288675.

    Article  MathSciNet  Google Scholar 

  36. Du Z, Chen X, Zhang H, Yan R. Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis. IEEE Trans Industr Electron. 2015;62(10):6594–605. https://doi.org/10.1109/TIE.2015.2464297.

    Article  Google Scholar 

  37. https://phmsociety.org/public-data-sets/#:~:text=The%202009%20PHM%20Challenge%20focused,damage%20in%20a%20gear%20system.

Download references

Acknowledgements

The author is thankful to the PHM 2009 Data Challenge team, for providing the dataset of the gearbox vibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, V. (2024). Sparse Frequency Representation Using Autocorrelation of Variational Mode Functions to Detect Compound Fault in Rotating Machines. In: Tiwari, R., Ram Mohan, Y.S., Darpe, A.K., Kumar, V.A., Tiwari, M. (eds) Vibration Engineering and Technology of Machinery, Volume II. VETOMAC 2021. Mechanisms and Machine Science, vol 153. Springer, Singapore. https://doi.org/10.1007/978-981-99-8986-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8986-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8985-0

  • Online ISBN: 978-981-99-8986-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation