Perceptual Hash Computation of Multimedia Objects Using Improved KL Transform

  • Conference paper
  • First Online:
Digital Communication and Soft Computing Approaches Towards Sustainable Energy Developments (ISSETA 2023)

Abstract

This paper presents an improvement for Karhunen–Loeve (KL) transform which is a new approach for computation of perceptual hash in multimedia objects. Basically, all the cryptographic algorithms used for computation of hash function for multimedia objects suffer from avalanche effect. Perceptual hash function is a solution to the avalanche effect problem. To achieve the goal, the original image size is reduced into 8 × 8 pixels which in turn divided into sixteen 2 × 2 matrices (after grayscale conversion). The prime benefit of proposed algorithm is to improve the complexity of the 2D KL transform and also simplify the structure which can give a chance for recursive and parallel processing of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dony R (2001) Karhunen-Loève transform. In: Rao KR, Yip PC (eds), Chapter 1: The Transform and Data Compression Handbook, CRC Press

    Google Scholar 

  2. Fleury M, Dowton A, Clark A (1997) Karhunen-Loeve transform: an exercise in simple image processing parallel pipelines. In: Third international Euro-Par conference, Passau, Germany, pp 1–25

    Google Scholar 

  3. Gonzales R, Woods R (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  4. Hao P, Shi Q (2003) Reversible integer KLT for progressive-to-lossless compression of multiple component images. IEEE ICIP 1:633–636

    Google Scholar 

  5. Jain A (1976) A fast Karhunen-Loeve transform for a class of random processes. IEEE Trans Commun COM-24(9):1023–1029

    Google Scholar 

  6. Jolliffe I (2002) Principal component analysis, 2nd edn. Springer, NY

    Google Scholar 

  7. Diamantaras K, Kung S (1996) Principal component neural networks: theory and applications. John Wiley & Sons, New York

    Google Scholar 

  8. Solo V, Kong X (1998) Performance analysis of adaptive Eigen analysis algorithms. IEEE Trans Signal Process 46(3):636–645

    Article  Google Scholar 

  9. Grasedyck L (2009) Hierarchical singular value decomposition of tensors, Preprint 20, AG Numerik/Optimierung, Philipps-Universitat Marburg, Marburg, Germany, July 8, pp 1–29

    Google Scholar 

  10. Hanafi M, Kohler A, Qannari E (2010) Shedding new light on hierarchical principal component analysis. J Chemom 24(11–12):703–709

    Article  Google Scholar 

  11. Erdogmus D, Rao Y, Peddaneni H, Hegde A, Principe J (2000) Recursive principal components analysis using eigenvector matrix perturbation. EURASIP J Adv Signal Process 2004(13):2034–2041

    Google Scholar 

  12. Li W, Yue H, Cervantes S, Qin S (2000) Recursive PCA for adaptive process monitoring. J Process Control 10(5):471–486

    Article  Google Scholar 

  13. Pandey S, Pradhan NR, Singh AP, Kushwaha DS (2022) Copyright infringement detection of multimedia objects using KL transform. In: 2022 4th International conference on energy, power and environment (ICEPE). IEEE, pp 1–4

    Google Scholar 

  14. Wang X, Pang K, Zhou X, Zhou Y, Li L, Xue J (2015) A visual model-based perceptual image hash for content authentication. IEEE Trans Inf Forensics Secur 10(7):1336–1349

    Article  Google Scholar 

  15. Zhang B, **n Y, Niu X-X (2011) Image perceptual hash algorithm based on target character. In: 2011 IEEE 13th international conference on communication technology, IEEE, 2011, pp 397–401

    Google Scholar 

  16. Yu S, Jiang Z (2015) Visual tracking via perceptual image hash from a mobile robot. In: 2015 IEEE international conference on information and automation, IEEE, 2015, pp 1612–1616

    Google Scholar 

  17. Alkawaz MH, Sulong G, Saba T, Rehman A (2018) Detection of copy-move image forgery based on discrete cosine transform. Neural Comput Appl 30(1):183–192

    Article  Google Scholar 

  18. Qin C, Chen X, Luo X, Zhang X, Sun X (2018) Perceptual image hashing via dual-cross pattern encoding and salient structure detection. Inform Sci 423:284–302

    Article  MathSciNet  Google Scholar 

  19. Hou JU, Lee H-K (2016) Detection of hue modification using photo response nonuniformity. IEEE Trans Circuits Syst Video Technol 27(8):1826–1832

    Article  Google Scholar 

  20. Das UK, Samaddar SG, Keserwani PK (2018) Digital forensic enabled image authentication using least significant bit (LSB) with tamper localization based hash function. In: Intelligent communication and computational technologies, Springer, 2018, pp 141–155

    Google Scholar 

  21. Weng L, Preneel B (2011) A secure perceptual hash algorithm for image content authentication. In: IFIP International conference on communications and multimedia security, Springer, 2011, pp 108–121

    Google Scholar 

  22. Hamon K, Schmucker M, Zhou X (2006) Histogram-based perceptual hashing for minimally changing video sequences. In: 2006 Second international conference on automated production of cross media content for multi-channel distribution, AXMEDIS’06, IEEE, 2006, pp 236–241

    Google Scholar 

  23. Li X, Zhao B, Lu X (2017) Key frame extraction in the summary space. IEEE Trans Cybern 48(6):1923–1934

    Article  Google Scholar 

  24. Zhang M, Tian L, Li C (2017) Key frame extraction based on entropy difference and perceptual hash. In: 2017 IEEE international symposium on multimedia, ISM, IEEE, 2017, pp 557–560

    Google Scholar 

  25. Kountchev, R. K., & Nakamatsu, K. (2014). Adaptive multi-level 2D Karhunen-Loeve-based transform for still images. International Journal of Reasoning-based Intelligent Systems 16, 6(1–2), 49–58.

    Google Scholar 

  26. Ahmad F, Cheng L-M (2018) Authenticity and copyright verification of printed images. Signal Process 148:322–335

    Article  Google Scholar 

  27. Al-khafaji SL, Zhou J, Zia A, Liew AW-C (2017) Spectral-spatial scale invariant feature transform for hyperspectral images. IEEE Trans Image Process 27(2):837–850

    Article  MathSciNet  Google Scholar 

  28. Benet J (2014) IPFS-content addressed, versioned, P2P file system, 2014, ar**v preprint ar**v:1407.3561

  29. Iwendi C, Jalil Z, Javed AR, Reddy T, Kaluri R, Srivastava G, Jo O (2020) Keysplitwatermark: zero watermarking algorithm for software protection against cyber-attacks. IEEE Access 8:72650–72660

    Article  Google Scholar 

  30. Kamal M, Srivastava G, Tariq M (2020) Blockchain-based lightweight and secured V2V communication in the internet of vehicles. IEEE Trans Intell Transp Syst

    Google Scholar 

  31. Li SA, Wang W-Y, Pan W-Z, Hsu C-CJ, Lu C-K (2018) FPGA-based hardware design for scale-invariant feature transform. IEEE Access 6:43850–43864

    Article  Google Scholar 

  32. Meng Z, Morizumi T, Miyata S, Kinoshita H (2018) Design scheme of copyright management system based on digital watermarking and blockchain. In: 2018 IEEE 42nd Annual computer software and applications conference, COMPSAC, vol 2, IEEE, 2018, pp 359–364

    Google Scholar 

  33. Niu XM, Jiao Y-H (2008) An overview of perceptual hashing. Acta Electron Sin 36(7):1405–1411

    Google Scholar 

  34. Połap D, Srivastava G, Yu K (2021) Agent architecture of an intelligent medical system based on federated learning and blockchain technology. J Inform Secur Appl 58:102748

    Google Scholar 

  35. Steinebach M (2011) Robust hashing for efficient forensic analysis of image sets. In: International conference on digital forensics and cyber crime, Springer, 2011, pp 180–187

    Google Scholar 

  36. Uzuner O, Davis R, Katz B (2004) Using empirical methods for evaluating expression and content similarity. In: Proceedings of the 37th annual Hawaii international conference on system sciences, 2004. IEEE, 2004, p 8

    Google Scholar 

  37. Zhao J, Zhang N, Jia J, Wang H (2015) Digital watermarking algorithm based on scale-invariant feature regions in non-subsampled contourlet transform domain. J Syst Eng Electron 26(6):1309–1314

    Article  Google Scholar 

  38. Zhou Z, Wang Y, Wu QJ, Yang C-N, Sun X (2016) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  39. Hoffman J (2001) Numerical methods for engineers and scientists. Marcel Dekker, NY, USA

    Google Scholar 

  40. Satellite, Cable and broadcasting services (TELSIKS’09), Nis, Serbia, pp 209–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilendra Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, S., Pradhan, N.R., Singh, A.P., Kushwaha, D.S. (2024). Perceptual Hash Computation of Multimedia Objects Using Improved KL Transform. In: Panda, G., Ramasamy, T.N., Ben Elghali, S., Affijulla, S. (eds) Digital Communication and Soft Computing Approaches Towards Sustainable Energy Developments. ISSETA 2023. Innovations in Sustainable Technologies and Computing. Springer, Singapore. https://doi.org/10.1007/978-981-99-8886-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8886-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8885-3

  • Online ISBN: 978-981-99-8886-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation