Generative AI Enables the Detection of Autism Using EEG Signals

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14463))

Included in the following conference series:

Abstract

In disease detection, generative models for data augmentation offer a potential solution to the challenges posed by limited high-quality electroencephalogram (EEG) data. The study proposes a temporal-spatial feature-aware denoising diffusion probabilistic model (DDPM), termed TF-DDPM, as an EEG time-series augmentation framework for autism research. The module for predicting noise is CCA-UNet based on the channel correlation-based attention (CCA) mechanism, which considers the spatial and temporal correlation between channels, and uses depthwise separable convolution instead of traditional convolution, thereby suppressing the interference from irrelevant channels. Visualization and binary classification results on synthetic signals indicate that proposed method generates higher quality synthetic data compared to Generative Adversarial Networks (GAN) and DDPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 73.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo, Y., Lu, B.: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2535–2538 (2018)

    Google Scholar 

  2. Lee, W., Lee, J., Kim, Y.: Contextual imputation with missing sequence of EEG signals using generative adversarial networks. IEEE Access 9, 151753–151765 (2021)

    Article  Google Scholar 

  3. Yu, W., et al.: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. 34(8), 4401–4415 (2023)

    Article  Google Scholar 

  4. Jamal, W., et al.: Using brain connectivity measure of EEG synchrostates for discriminating typical and Autism Spectrum Disorder. In: Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1402–1405 (2013)

    Google Scholar 

  5. Jamal, W., Das, S., Oprescu, I.A., Maharatna, K., Apicella, F., Sicca, F.: Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J. Neural Eng. 11(4), 046019 (2014)

    Article  Google Scholar 

  6. Truong, D., Makeig, S., Delorme, A.: Assessing learned features of Deep Learning applied to EEG. In: Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3667–3674 (2021)

    Google Scholar 

  7. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

    Article  Google Scholar 

  8. Kebaili, A., Lapuyade-Lahorgue, J., Ruan, S.: Deep learning approaches for data augmentation in medical imaging: a review. J. Imaging 9(4), 81 (2023)

    Article  Google Scholar 

  9. Garcea, F., Serra, A., Lamberti, F., Morra, L.: Data augmentation for medical imaging: a systematic literature review. Comput. Biol. Med. 152, 106391 (2023)

    Article  Google Scholar 

  10. Hu, B., Zhan, C., Tang, B., Wang, B., Lei, B., Wang, S.: 3D brain reconstruction by hierarchical shape-perception network from a single incomplete image. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2023)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  12. You, S., et al.: Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Tran. Neural Netw. Learn. Syst. 1–13 (2022)

    Google Scholar 

  13. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional map** generative adversarial networks for brain MR to PET synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2022)

    Article  Google Scholar 

  14. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327 (2020)

    Google Scholar 

  15. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  16. Wang, S., Shen, Y., Zeng, D., Hu, Y.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178 (2018)

    Google Scholar 

  17. Panwar, S., Rad, P., Quarles, J., Huang, Y.: Generating EEG signals of an RSVP experiment by a class conditioned Wasserstein generative adversarial network. In: Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari (2019)

    Google Scholar 

  18. Zhang, K., et al.: Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 20(16), 4485 (2020)

    Article  Google Scholar 

  19. Panwar, S., Rad, P., Jung, T.-P., Huang, Y.: Modeling EEG data distribution with a Wasserstein generative adversarial network to predict RSVP events. IEEE Trans. Neural Syst. Rehabil. Eng. 28(8), 1720–1730 (2020)

    Article  Google Scholar 

  20. Wang, S., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 426–437 (2022)

    Article  Google Scholar 

  21. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 214–223. JMLR (2017)

    Google Scholar 

  22. Ho, J., Chen, X., Srinivas, A., Duan, Y., Abbeel, P.: Denoising diffusion probabilistic models. ar**v:2006.11239 (2020)

  23. Shu, K., Zhao, Y., Wu, L., Liu, A., Qian, R., Chen, X.: Data augmentation for seizure prediction with generative diffusion model. ar**v:2306.08256 (2023)

  24. Tosato, G., Dalbagno, C.M., Fumagalli, F.: EEG synthetic data generation using probabilistic diffusion models. ar**v:2303.06068 (2023)

  25. Author(s): Brain Signal Generation and Data Augmentation with a Single-Step Diffusion Probabilistic Model. Paper under double-blind review, presented at ICLR (2023)

    Google Scholar 

  26. Pelphrey, K.: Multimodal Developmental Neurogenetics of Females with ASD. NIMH Data Archive. (2012). https://nda.nih.gov/experiment.html?id=196 &collectionId=2021

  27. Alcaraz, J.M.L., Strodthoff, N.: Diffusion-based conditional ECG generation with structured state space models. ar**v preprint ar**v:2301.08227 (2023)

  28. Wang, S., Chen, Z., You, S., Lei, B.: Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput. Appl. 34, 8657–8669 (2022)

    Article  Google Scholar 

  29. Gong, C., et al.: Generative AI for brain image computing and brain network computing: a review. Front. Neurosci. 17 (2023)

    Google Scholar 

  30. Miao, Z., Zhao, M.: Time-space-frequency feature Fusion for 3-channel motor imagery classification. ar**v preprint ar**v:2304.01461 (2023)

  31. Torma, S., Szegletes, L.: EEGWave: a Denoising Diffusion Probabilistic Approach for EEG Signal Generation. EasyChair (2023)

    Google Scholar 

  32. Yan, Y., et al.: Topological EEG nonlinear dynamics analysis for emotion recognition. IEEE Trans. Cogn. Dev. Syst. 15(2), 625–638 (2023)

    Article  Google Scholar 

  33. Li, Y., Zhang, X.R., Zhang, B., Lei, M.Y., Cui, W.G., Guo, Y.Z.: A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 1170–1180 (2019)

    Article  Google Scholar 

  34. Zhang, C., Kim, Y.K., Eskandarian, A.: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. J. Neural Eng. 18, 046014 (2021)

    Article  Google Scholar 

  35. Shovon, T.H., Nazi, Z.A., Dash, S., Hossain, F.: Classification of motor imagery EEG signals with multi-input convolutional neural network by augmenting STFT. In: Proceedings of the 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grant 62172403, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liao, I.Y., Zhong, N., Toshihiro, F., Wang, Y., Wang, S. (2023). Generative AI Enables the Detection of Autism Using EEG Signals. In: Jia, W., et al. Biometric Recognition. CCBR 2023. Lecture Notes in Computer Science, vol 14463. Springer, Singapore. https://doi.org/10.1007/978-981-99-8565-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8565-4_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8564-7

  • Online ISBN: 978-981-99-8565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation