MIDGET: Music Conditioned 3D Dance Generation

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

In this paper, we introduce a MusIc conditioned 3D Dance GEneraTion model, named MIDGET based on Dance motion Vector Quantised Variational AutoEncoder (VQ-VAE) model and Motion Generative Pre-Training (GPT) model to generate vibrant and high-quality dances that match the music rhythm. To tackle challenges in the field, we introduce three new components: 1) a pre-trained memory codebook based on the Motion VQ-VAE model to store different human pose codes, 2) employing Motion GPT model to generate pose codes with music and motion Encoders, 3) a simple framework for music feature extraction. We compare with existing state-of-the-art models and perform ablation experiments on AIST++, the largest publicly available music-dance dataset. Experiments demonstrate that our proposed framework achieves state-of-the-art performance on motion quality and its alignment with the music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. ar**v preprint ar**v:1308.3432 (2013)

  2. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  3. Dhariwal, P., Jun, H., Payne, C., Kim, J.W., Radford, A., Sutskever, I.: Jukebox: a generative model for music. ar**v preprint ar**v:2005.00341 (2020)

  4. Fachner, J.: Time is the key-music and altered states of consciousness. Altering Conscious.: Multidisc. Perspect. 1, 355–376 (2011)

    Google Scholar 

  5. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Hu, Z., Dong, Y., Wang, K., Chang, K.W., Sun, Y.: GPT-GNN: generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1857–1867 (2020)

    Google Scholar 

  9. Huang, R., Hu, H., Wu, W., Sawada, K., Zhang, M., Jiang, D.: Dance revolution: Long-term dance generation with music via curriculum learning. ar**v preprint ar**v:2006.06119 (2020)

  10. Jain, L.C., Medsker, L.R.: Recurrent Neural Networks: Design and Applications, 1st edn. CRC Press Inc, USA (1999)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  12. Lawrance, A., Lewis, P.: An exponential moving-average sequence and point process (ema1). J. Appl. Probab. 14(1), 98–113 (1977)

    Article  MATH  Google Scholar 

  13. Lee, H.Y., et al.: Dancing to music. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Lee, M., Lee, K., Park, J.: Music similarity-based approach to generating dance motion sequence. Multimedia Tools Appl. 62, 895–912 (2013)

    Article  Google Scholar 

  15. Li, B., Zhao, Y., Zhelun, S., Sheng, L.: Danceformer: music conditioned 3d dance generation with parametric motion transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1272–1279 (2022)

    Google Scholar 

  16. Li, R., et al.: Magic: multi art genre intelligent choreography dataset and network for 3d dance generation. ar**v preprint ar**v:2212.03741 (2022)

  17. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3d dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)

    Google Scholar 

  18. Li, Z., Zhou, Y., **s for choreography synthesis. IEEE Trans. Multimed. 14(3), 747–759 (2012)

    Article  Google Scholar 

  19. Qi, Y., Liu, Y., Sun, Q.: Music-driven dance generation. IEEE Access 7, 166540–166550 (2019)

    Article  Google Scholar 

  20. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  21. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Shiratori, T., Nakazawa, A., Ikeuchi, K.: Synthesizing dance performance using musical and motion features. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 3654–3659 (2006). https://doi.org/10.1109/ROBOT.2006.1642260

  23. Siyao, L., et al.: Bailando: 3d dance generation via actor-critic GPT with choreographic memory. In: CVPR (2022)

    Google Scholar 

  24. Steinberg, N., et al.: Range of joint movement in female dancers and nondancers aged 8 to 16 years: anatomical and clinical implications. Am. J. Sports Med. 34(5), 814–823 (2006)

    Article  Google Scholar 

  25. Tseng, J., Castellon, R., Liu, C.K.: Edge: editable dance generation from music. ar**v preprint ar**v:2211.10658 (2022)

  26. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **wu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Mao, W., Liu, M. (2024). MIDGET: Music Conditioned 3D Dance Generation. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation