Crack Nucleation During Creep Fracture

  • Chapter
  • First Online:
Static Creep Micro-Macro Fracture Mechanics of Brittle Solids

Abstract

Some stress drops appear during the process of deformation under triaxial compressive tests in intact brittle rocks in Fig. 6.1, and each stress drop is associated with an individual shear band caused by strain localization from the accumulation and nucleation of distributed microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanpied ML, Tullis TE, Weeks JD. Frictional behavior of granite at low and high sliding velocities. Geophys Res Lett. 1987;14(5):554–7.

    Article  Google Scholar 

  • Brace WF, Byerlee JD. Stick-slip as a mechanism for earthquakes. Science. 1966;153(3739):990–2.

    Article  Google Scholar 

  • Brantut N, Schubnel A, Guéguen Y (2011) Damage and rupture dynamics at the brittle-ductile transition: the case of gypsum. J Geophys Res. 116(B1)

    Google Scholar 

  • Chen ZH, Fu YF, Tang CA. Confining pressure effect on acoustic emissions in rock failure. Chinese J Rock Mech Eng. 1997;16(1):65–70.

    Google Scholar 

  • Dieterich JH (1979a) Modeling of rock friction 1. Experimental results and constitutive equations. J Geophys Res. 84(B5):2161−2168

    Google Scholar 

  • Dieterich JH (1979b) Modeling of rock friction 2. Simulation of preseismic slip. J Geophys Res. 84(B5):2169−2145

    Google Scholar 

  • Goldsby DL, Tullis TE. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science. 2011;334(6053):216–8.

    Article  Google Scholar 

  • Ide S, Beroza GC, Shelly DR, Uchide T. A scaling law for slow earthquakes. Nature. 2007;447(7140):76.

    Article  Google Scholar 

  • Ikari MJ, Marone C, Saffer DM, Kopf AJ. Slip weakening as a mechanism for slow earthquakes. Nat Geosc. 2013;6(6):468.

    Article  Google Scholar 

  • Leeman JR, Saffer DM, Scuderi MM, Marone C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat Commun. 2016;7:11104.

    Article  Google Scholar 

  • Leeman JR, Marone C, Saffer DM. Frictional mechanics of slow earthquakes. J Geophys Res. 2018;123:7931–49.

    Article  Google Scholar 

  • Li H, Li H, Gao B, Jiang D, Feng J (2015) Study of acoustic emission and mechanical characteristics of coal samples under different loading rates. Shock and Vibrat 458519

    Google Scholar 

  • Linde AT, Gladwin MT, Johnston MJ, Gwyther RL, Bilham RG. A slow earthquake sequence on the San Andreas fault. Nature. 1996;383(6595):65.

    Article  Google Scholar 

  • Mazars J. A description of micro- and macroscale damage of concrete structures. Eng Fract Mech. 1986;25(5–6):729–37.

    Article  Google Scholar 

  • Ohnaka M. A shear failure strength law of rock in the brittle-plastic transition regime. Geophys Res Lett. 1995;22(1):25–8.

    Article  Google Scholar 

  • Ohnaka M, Akatsu M, Mochizuki H, Odedra A, Tagashira F, Yamamoto Y. A constitutive law for the shear failure of rock under lithospheric conditions. Tectonophysics. 1997;277:1–27.

    Article  Google Scholar 

  • Ruina A. Slip instability and state variable friction laws. J Geophys Res. 1983;88(B12):10359–70.

    Article  Google Scholar 

  • Scholz CH. Earthquakes and friction laws. Nature. 1998;391(391):37–42.

    Article  Google Scholar 

  • Sleep NH, Blanpied ML. Creep, compaction and the weak rheology of major faults. Nature. 1992;359(6397):687.

    Article  Google Scholar 

  • Spagnuolo E, Nielsen S, Violay M, Di Toro G. An empirically based steady state friction law and implications for fault stability. Geophys Res Lett. 2016;43:3263–71.

    Article  Google Scholar 

  • Sun JS, Chen M, Jiang QH, Lu WB, Zhou CB. Numerical simulation of mesomechanical characteristics of creep demage evolution for **g** marble. Chinese J Rock Soil Mech. 2013;34(12):3601–8.

    Google Scholar 

  • **a YJ, Li LC, Tang CA, Li XY, Ma S, Li M. A new method to evaluate rock mass brittleness based on stress-strain curves of class I. Rock Mech Rock Eng. 2017;50(5):1123–39.

    Article  Google Scholar 

  • Zhu WS, Qi YP, Guo YH, Yang WM. 3D damage rheology analysis of deformation and fracture of surrounding rocks in **** I hydropower station underground powerhouse. Chinese J Rock Mech Eng. 2012;31(5):865–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aozhao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Shao, Z., Qi, C. (2024). Crack Nucleation During Creep Fracture. In: Static Creep Micro-Macro Fracture Mechanics of Brittle Solids. Springer, Singapore. https://doi.org/10.1007/978-981-99-8203-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8203-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8202-8

  • Online ISBN: 978-981-99-8203-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation