Multi-level Attention Network with Weather Suppression for All-Weather Action Detection in UAV Rescue Scenarios

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1963))

Included in the following conference series:

  • 484 Accesses

Abstract

Unmanned Aerial Vehicles (UAVs) possess significant advantages in terms of mobility and range compared to traditional surveillance cameras. Human action detection from UAV images has the potential to assist in various fields, including search and rescue operations. However, UAV images present challenges such as varying heights, angles, and the presence of small objects. Additionally, they can be affected by adverse illumination and weather conditions. In this paper, we propose a Multi-level Attention network with Weather Suppression for all-weather action detection in UAV rescue scenarios. The Weather Suppression module effectively mitigates the impact of illumination and weather, while the Multi-level Attention module enhances the model’s performance in detecting small objects. We conducted detection experiments under both normal and synthetic harsh conditions, and the results demonstrate that our model achieves state-of-the-art performance. Furthermore, a comparison of relevant metrics reveals that our model strikes a balance between size and complexity, making it suitable for deployment on UAV platforms. The conducted ablation experiments also highlight the significant contribution of our proposed modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barekatain, M., Martí, M., et al: Okutama-action: an aerial view video dataset for concurrent human action detection. In: CVPR Workshops, pp. 2153–2160 (2017)

    Google Scholar 

  2. Bozcan, I., Kayacan, E.: AU-AIR: a multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance. In: ICRA, pp. 8504–8510 (2020)

    Google Scholar 

  3. Bozcan, I., Kayacan, E.: Context-dependent anomaly detection for low altitude traffic surveillance. CoRR abs/2104.06781 (2021)

    Google Scholar 

  4. Budiharto, W., Gunawan, A.A.S., et al.: Fast object detection for quadcopter drone using deep learning. In: ICCCS, pp. 192–195 (2018)

    Google Scholar 

  5. Cai, Y., Du, D., et al.: Guided attention network for object detection and counting on drones. In: MM, pp. 709–717 (2020)

    Google Scholar 

  6. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR, pp. 6154–6162 (2018)

    Google Scholar 

  7. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., Tian, Q.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_23

    Chapter  Google Scholar 

  8. Erdelj, M., Natalizio, E.: UAV-assisted disaster management: applications and open issues. In: ICNC, pp. 1–5 (2016)

    Google Scholar 

  9. Everingham, M., Gool, L.V., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  10. Ge, Z., Liu, S., et al.: YOLOX: exceeding YOLO series in 2021. CoRR abs/2107.08430 (2021)

    Google Scholar 

  11. Ghiasi, G., Lin, T., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)

    Google Scholar 

  12. Girshick, R.B.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  13. Girshick, R.B., Donahue, J., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  14. Goodfellow, I.J., Pouget-Abadie, J., et al.: Generative adversarial networks. Commun. ACM. 63, 139–144 (2020)

    Article  Google Scholar 

  15. He, K., Gkioxari, G., et al.: Mask R-CNN. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Land, E.H.: The retinex theory of color vision. Sci. Am. 237, 108–129 (1977)

    Article  Google Scholar 

  18. Li, T., Liu, J., et al.: UAV-human: a large benchmark for human behavior understanding with unmanned aerial vehicles. In: CVPR, pp. 16266–16275 (2021)

    Google Scholar 

  19. Li, Z., Liu, X., et al.: A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs. J. Vis. Commun. Image Represent. 77, 103058 (2021)

    Article  Google Scholar 

  20. Liang, X., Zhang, J., et al.: Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE Trans. Circuits Syst. Video Technol. 30, 1758–1770 (2020)

    Article  Google Scholar 

  21. Lin, T., Goyal, P., et al.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Liu, C., Szirányi, T.: Real-time human detection and gesture recognition for on-board UAV rescue. Sensors. 21, 2180 (2021)

    Article  Google Scholar 

  24. Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. CoRR abs/1911.09516 (2019)

    Google Scholar 

  25. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  26. Mabrouk, A.B., Zagrouba, E.: Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst. Appl. 91, 480–491 (2018)

    Article  Google Scholar 

  27. Mishra, B., Garg, D., et al.: Drone-surveillance for search and rescue in natural disaster. Comput. Commun. 156, 1–10 (2020)

    Article  Google Scholar 

  28. Moranduzzo, T., Melgani, F.: Detecting cars in UAV images with a catalog-based approach. IEEE Trans. Geosci. Remote. Sens. 52, 6356–6367 (2014)

    Article  Google Scholar 

  29. Du, D., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_23

    Chapter  Google Scholar 

  30. Papaioannidis, C., Mademlis, I., Pitas, I.: Autonomous UAV safety by visual human crowd detection using multi-task deep neural networks. In: ICRA, pp. 11074–11080 (2021)

    Google Scholar 

  31. Perera, A.G., Law, Y.W., Chahl, J.: Drone-action: an outdoor recorded drone video dataset for action recognition. Drones. 3, 82 (2019)

    Article  Google Scholar 

  32. Perera, A.G., Law, Y.W., Chahl, J.: UAV-GESTURE: a dataset for UAV control and gesture recognition. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 117–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_9

    Chapter  Google Scholar 

  33. Perlin, K.: Improving noise. In: ACM Transactions of Graph, pp. 681–682, July 2002

    Google Scholar 

  34. Radovic, M., Adarkwa, O., Wang, Q.: Object recognition in aerial images using convolutional neural networks. J. Imaging. 3, 21 (2017)

    Article  Google Scholar 

  35. Redmon, J., Divvala, S.K., et al.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  36. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018)

    Google Scholar 

  37. Ren, S., He, K., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  38. Rohan, A., Rabah, M., Kim, S.H.: Convolutional neural network-based real-time object detection and tracking for parrot AR drone 2, pp. 69575–69584 . IEEE Access (2019)

    Google Scholar 

  39. Semsch, E., Jakob, M., et al.: Autonomous UAV surveillance in complex urban environments. In: IAT, pp. 82–85 (2009)

    Google Scholar 

  40. Sevo, I., Avramovic, A.: Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote. Sens. Lett. 13, 740–744 (2016)

    Article  Google Scholar 

  41. Sommer, L.W., Schuchert, T., Beyerer, J.: Fast deep vehicle detection in aerial images. In: WACV, pp. 311–319 (2017)

    Google Scholar 

  42. Szeliski, R.: Computer Vision: Algorithms and Applications, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-030-34372-9

    Book  Google Scholar 

  43. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: CVPR, pp. 10778–10787 (2020)

    Google Scholar 

  44. Tijtgat, N., Volckaert, B., Turck, F.D.: Real-time hazard symbol detection and localization using UAV imagery. In: VTC, pp. 1–5 (2017)

    Google Scholar 

  45. Wen, X., Shao, L., et al.: Efficient feature selection and classification for vehicle detection. IEEE Trans. Circuits Syst. Video Technol. 25, 508–517 (2015)

    Article  Google Scholar 

  46. Wu, Z., Suresh, K., et al.: Delving into robust object detection from unmanned aerial vehicles: a deep nuisance disentanglement approach. In: ICCV, pp. 1201–1210 (2019)

    Google Scholar 

  47. **e, H., Chen, Y., Shin, H.: Context-aware pedestrian detection especially for small-sized instances with deconvolution integrated faster RCNN (DIF R-CNN). Appl. Intell. 49, 1200–1211 (2019)

    Article  Google Scholar 

  48. **e, H., Shin, H.: Two-stream small-scale pedestrian detection network with feature aggregation for drone-view videos. Multidimens. Syst. Signal Process. 32, 897–913 (2021)

    Article  Google Scholar 

  49. Ye, J., Fu, C., et al.: Darklighter: light up the darkness for UAV tracking. In: IROS, pp. 3079–3085 (2021)

    Google Scholar 

  50. Yu, W., Yang, T., Chen, C.: Towards resolving the challenge of long-tail distribution in UAV images for object detection. In: WACV, pp. 3257–3266 (2021)

    Google Scholar 

  51. Zhang, C., Ge, S., et al.: Accurate UAV tracking with distance-injected overlap maximization. In: MM, pp. 565–573 (2020)

    Google Scholar 

  52. Zhang, X., Izquierdo, E., Chandramouli, K.: Dense and small object detection in UAV vision based on cascade network. In: ICCV, pp. 118–126 (2019)

    Google Scholar 

  53. Zhu, P., Wen, L., et al: Vision meets drones: a challenge. CoRR abs/1804.07437 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Li, B., Sammut, C., Yao, L. (2024). Multi-level Attention Network with Weather Suppression for All-Weather Action Detection in UAV Rescue Scenarios. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation