RPF3D: Range-Pillar Feature Deep Fusion 3D Detector for Autonomous Driving

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

In this paper, we present RPF3D, an innovative single-stage framework that explores the complementary nature of point clouds and range images for 3D object detection. Our method addresses the sampling region imbalance issue inherent in fixed-dilation-rate convolutional layers, allowing for a more accurate representation of the input data. To enhance the model’s adaptability, we introduce several attention layers that accommodate a wide range of dilation rates necessary for processing range image scenes. To tackle the challenges of feature fusion and alignment, we propose the AttentiveFusion module and the Range Image Guided Deep Fusion (RIGDF) backbone architecture in the Range-Pillar Feature Fusion section, which effectively addresses the one-pillar-to-multiple-pixels feature alignment problem caused by the point cloud encoding strategy. These innovative components work together to provide a more robust and accurate fusion of features for improved 3D object detection. We validate the effectiveness of our RPF3D framework through extensive experiments on the KITTI and Waymo Open Datasets. The results demonstrate the superior performance of our approach compared to existing methods, particularly in the Car class detection where a significant enhancement is achieved on both datasets. This showcases the practical applicability and potential impact of our proposed framework in real-world scenarios and emphasizes its relevance in the domain of 3D object detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range conditioned dilated convolutions for scale invariant 3D object detection. ar**v preprint ar**v:2005.09927 (2020)

  2. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel R-CNN: towards high performance voxel-based 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1201–1209 (2021)

    Google Scholar 

  3. Deng, J., Zhou, W., Zhang, Y., Li, H.: From multi-view to hollow-3D: hallucinated hollow-3D R-CNN for 3D object detection. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4722–4734 (2021)

    Article  Google Scholar 

  4. Fan, L., **ong, X., Wang, F., Wang, N., Zhang, Z.: RangeDet: in defense of range view for lidar-based 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2918–2927 (2021)

    Google Scholar 

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012). https://doi.org/10.1109/CVPR.2012.6248074

  6. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  7. He, C., Li, R., Li, S., Zhang, L.: Voxel set transformer: a set-to-set approach to 3D object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8417–8427 (2022)

    Google Scholar 

  8. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3D object detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11873–11882 (2020)

    Google Scholar 

  9. He, Q., Wang, Z., Zeng, H., Zeng, Y., Liu, Y.: SVGA-Net: sparse voxel-graph attention network for 3D object detection from point clouds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 870–878 (2022)

    Google Scholar 

  10. Hu, J.S., Kuai, T., Waslander, S.L.: Point density-aware voxels for lidar 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8469–8478 (2022)

    Google Scholar 

  11. Huang, T., Liu, Z., Chen, X., Bai, X.: EPNet: enhancing point features with image semantics for 3D object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 35–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_3

    Chapter  Google Scholar 

  12. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  13. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  14. Li, X., et al.: Homogeneous multi-modal feature fusion and interaction for 3D object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXXVIII, pp. 691–707. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19839-7_40

  15. Li, Y., et al.: DeepFusion: lidar-camera deep fusion for multi-modal 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17182–17191 (2022)

    Google Scholar 

  16. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7345–7353 (2019)

    Google Scholar 

  17. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  18. Liang, Z., Zhang, M., Zhang, Z., Zhao, X., Pu, S.: RangeRCNN: towards fast and accurate 3D object detection with range image representation. ar**v preprint ar**v:2009.00206 (2020)

  19. Liang, Z., Zhang, Z., Zhang, M., Zhao, X., Pu, S.: RangeioUDet: range image based real-time 3D object detector optimized by intersection over union. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7140–7149, June 2021

    Google Scholar 

  20. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)

    Google Scholar 

  21. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12677–12686 (2019)

    Google Scholar 

  22. Miao, Z., et al.: PVGNet: a bottom-up one-stage 3D object detector with integrated multi-level features. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3278–3287 (2021). https://doi.org/10.1109/CVPR46437.2021.00329

  23. Piergiovanni, A., Casser, V., Ryoo, M.S., Angelova, A.: 4D-net for learned multi-modal alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15435–15445 (2021)

    Google Scholar 

  24. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)

    Google Scholar 

  25. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  26. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529–10538 (2020)

    Google Scholar 

  28. Shi, S., et al.: PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection. ar**v preprint ar**v:2102.00463 (2021)

  29. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  30. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2647–2664 (2020)

    Google Scholar 

  31. Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1711–1719 (2020)

    Google Scholar 

  32. Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. CoRR abs/1912.04838 (2019). http://arxiv.org/abs/1912.04838

  33. Sun, P., et al.: RSN: range sparse net for efficient, accurate lidar 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5725–5734 (2021)

    Google Scholar 

  34. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4603–4611 (2019)

    Google Scholar 

  35. Wang, C., Ma, C., Zhu, M., Yang, X.: PointAugmenting: cross-modal augmentation for 3D object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11789–11798 (2021). https://doi.org/10.1109/CVPR46437.2021.01162

  36. Wang, L., Wang, C., Zhang, X., Lan, T., Li, J.: S-AT GCN: spatial-attention graph convolution network based feature enhancement for 3D object detection. ar**v preprint ar**v:2103.08439 (2021)

  37. Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2

    Chapter  Google Scholar 

  38. Wang, Z., Jia, K.: Frustum ConvNet: sliding frustums to aggregate local point-wise features for amodal 3D object detection. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1742–1749. IEEE (2019)

    Google Scholar 

  39. **e, L., Xu, G., Cai, D., He, X.: X-view: non-egocentric multi-view 3D object detector. IEEE Trans. Image Process. 32, 1488–1497 (2023). https://doi.org/10.1109/TIP.2023.3245337

  40. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  41. Yang, B., Liang, M., Urtasun, R.: HDNET: exploiting HD maps for 3D object detection. In: Conference on Robot Learning, pp. 146–155. PMLR (2018)

    Google Scholar 

  42. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  43. Yang, H., et al.: GD-MAE: generative decoder for MAE pre-training on lidar point clouds. ar**v preprint ar**v:2212.03010 (2022)

  44. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3DSSD: point-based 3D single stage object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11040–11048 (2020)

    Google Scholar 

  45. Yuan, Z., Song, X., Bai, L., Wang, Z., Ouyang, W.: Temporal-channel transformer for 3D lidar-based video object detection for autonomous driving. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2068–2078 (2022). https://doi.org/10.1109/TCSVT.2021.3082763

    Article  Google Scholar 

  46. Zhang, Y., Hu, Q., Xu, G., Ma, Y., Wan, J., Guo, Y.: Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18953–18962 (2022)

    Google Scholar 

  47. Zheng, W., Tang, W., Chen, S., Jiang, L., Fu, C.W.: CIA-SSD: confident IoU-aware single-stage object detector from point cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3555–3562 (2021)

    Google Scholar 

  48. Zhou, C., Zhang, Y., Chen, J., Huang, D.: OcTr: octree-based transformer for 3D object detection. ar**v preprint ar**v:2303.12621 (2023)

  49. Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in lidar point clouds. In: Conference on Robot Learning, pp. 923–932. PMLR (2020)

    Google Scholar 

  50. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  51. Zou, Y., Cheng, L., Li, Z.: A multimodal fusion model for estimating human hand force: comparing surface electromyography and ultrasound signals. IEEE Rob. Autom. Mag. 29(4), 10–24 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yan, Q. (2024). RPF3D: Range-Pillar Feature Deep Fusion 3D Detector for Autonomous Driving. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation