Big Data in Smart Grid and Edge Computing of the IoT

  • Chapter
  • First Online:
Key Technologies of Internet of Things and Smart Grid

Part of the book series: Advanced and Intelligent Manufacturing in China ((AIMC))

  • 102 Accesses

Abstract

The smart grid surpasses the traditional grid in terms of the type, scale, and speed of data generated during the transition. In addition to monitoring grid operations, the smart grid also focuses on gathering power consumption data from various user appliances. This necessitates the implementation of big data technology to efficiently manage, analyze, and even schedule grid operations. By doing so, the smart grid can operate with enhanced precision and efficiency while swiftly responding to user demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.contiki-os.org/.

References

  1. Oussous A et al (2017) Big data technologies: a survey. J King Saud Univ Comput Inf Sci https://doi.org/10.1016/j.jksuci.2017.06.001

  2. Chunming T, ** H, Zhikang S et al (2017) Big data issues in smart grid—a review. Renew Sustain Energ Rev 79:1099–1107. https://doi.org/10.1016/j.rser.2017.05.134

  3. Farhangi H (2010) The path of the smart grid. Power Energy Mag IEEE 8(1):18–28

    Article  MathSciNet  Google Scholar 

  4. DOE., Advancement of synchrophasor technology in ARRA Projects. https://www.smartgrid.gov/recovery_act/program_publications.html

  5. DOE., Summary of the North American synchrophasor initiative (NASPI) activity area. https://www.naspi.org/documents

  6. Yuan J, Shen J, Pan L et al (2014) Smart grids in China. Renew Sustain Energy Rev 37(3):896–906

    Article  Google Scholar 

  7. Klump R, Agarwal P, Tate JE et al (2010) Lossless compression of synchronized phasor measurements. In: Proceedings of the IEEE power and energy society general meeting. Minneapolis, MN, USA, pp 1–7

    Google Scholar 

  8. Depuru SSSR, Wang L, Devabhaktuni V (2011) Smart meters for power grid: challenges, issues, advantages and status. Renew Sustain Energy Rev 15(6):2736–2742

    Article  Google Scholar 

  9. Kabalci Y (2016) A survey on smart metering and smart grid communication. Renew Sustain Energy Rev 57:302–318

    Article  Google Scholar 

  10. Alahakoon D, Yu X (2016) Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans Ind Inf 12(1):425–436

    Article  Google Scholar 

  11. Shuai Z, Sun Y, Shen Z et al (2016) Microgrid stability: classification and a review. Renew Sustain Energy Rev 58:167–179

    Article  Google Scholar 

  12. Electric Power Group, Wind farm oscillation detection and mitigation. https://www.smartgrid.gov/recovery_act/project_information.htm

  13. Short TA (2013) Advanced metering for phase identification, transformer identification, and secondary modeling. IEEE Trans Smart Grid 4(2):651–658

    Article  Google Scholar 

  14. Overholt P, Kosterev D, Eto J et al (2014) Improving reliability through better models: using synchrophasor data to validate power plant models. IEEE Power Energy Mag 12(3):44–51

    Article  Google Scholar 

  15. Luan W, Peng J, Maras M et al (2015) Smart meter data analytics for distribution network connectivity verification. IEEE Trans Smart Grid 6(4):1–1

    Google Scholar 

  16. Hajnoroozi AA, Aminifar F, Ayoubzadeh H (2015) Generating unit model validation and calibration through synchrophasor measurements. IEEE Trans Smart Grid 6(1):441–449

    Article  Google Scholar 

  17. Erlinghagen S, Lichtensteiger B, Markard J (2015) Smart meter communication standards in Europe—a comparison. Renew Sustain Energy Rev 43:1249–1262

    Article  Google Scholar 

  18. Zhou K, Yang S (2016) Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew Sustain Energy Rev 56:810–819

    Article  Google Scholar 

  19. Aminifar F, Fotuhi-Firuzabad M, Shahidehpour et al (2011) A probabilistic multistage PMU placement in electric power systems. IEEE Trans Power Deliv 26(2):841–849

    Google Scholar 

  20. Gopakumar P, Chandra G, Reddy M et al (2013) Optimal placement of PMUs for the smart grid implementation in Indian power grid—a case study. Front Energy 7(3):358–372

    Article  Google Scholar 

  21. Xu B, Abur A (2004) Observability analysis and measurement placement for systems with PMUs. In: Proceedings of the IEEE PES power systems conference and exposition, vol 2, no 10, pp 943–946

    Google Scholar 

  22. Huang J, Wu N, Ruschmann M (2014) Data-availability-constrained placement of PMUs and communication links in a power system. IEEE Syst J 8(2):483–492

    Article  Google Scholar 

  23. Li Q, Cui T, Weng Y, Negi R et al (2013) An information-theoretic approach to PMU placement in electric power systems. IEEE Trans Smart Grid 4(1):446–456

    Article  Google Scholar 

  24. Sodhi R, Srivastava SC, Singh SN (2011) Multi-criteria decision-making approach for multistage optimal placement of phasor measurement units. IET Gener Transm Distrib 5(2):181–190

    Article  Google Scholar 

  25. Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, pp 71–80

    Google Scholar 

  26. Basu C, Agrawal A, Hazra J et al (2014) Understanding events for wide-area situational awareness. In: Proceedings of the innovative smart grid technologies conference. IEEE, pp 1–5

    Google Scholar 

  27. Peppanen J, Reno MJ, Thakkar M et al (2015) Leveraging AMI data for distribution system model calibration and situational awareness. IEEE Trans Smart Grid 6(4):2050–2059

    Article  Google Scholar 

  28. Gol M, Abur A (2015) A fast decoupled state estimator for systems measured by PMUs. IEEE Trans Power Syst 30(5):2766–2771

    Article  Google Scholar 

  29. Zhao J, Zhang G, Das K et al (2015) Power system real-time monitoring by using PMU-based robust state estimation method. IEEE Trans Smart Grid 7(1):1

    Google Scholar 

  30. **e L, Chen Y, Kumar PR (2014) Dimensionality reduction of synchrophasor data for early event detection: linearized analysis. IEEE Trans Power Syst 29(6):2784–2794

    Article  Google Scholar 

  31. Dahal OP, Brahma SM, Cao H (2014) Comprehensive clustering of disturbance events recorded by phasor measurement units. IEEE Trans Power Deliv 29(3):1390–1397

    Article  Google Scholar 

  32. Khan AR, Mahmood A, Safdar A et al (2016) Load forecasting, dynamic pricing and DSM in smart grid: a review. Renew Sustain Energy Rev 54:1311–1322

    Article  Google Scholar 

  33. Selakov A, Cvijetinović D, Milović L et al (2014) Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl Soft Comput 16(3):80–88

    Article  Google Scholar 

  34. Deihimi A, Orang O, Showkati H (2013) Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy 57(3):382–401

    Article  Google Scholar 

  35. Zhu L, Wu QH, Li MS et al (2013) Support vector regression-based short-term wind power prediction with false neighbors filtered. In: Proceedings of the international conference on renewable energy research and applications. IEEE, pp 740–744

    Google Scholar 

  36. Rocio Cogollo M, Velasquez JD (2014) Methodological advances in artificial neural networks for time series forecasting. IEEE Lat Am Trans 12(4):764–771

    Article  Google Scholar 

  37. Huang SC, Lu CN, Lo YL (2015) Evaluation of AMI and SCADA data synergy for distribution feeder modeling. IEEE Trans Smart Grid 6(4):1–1

    Google Scholar 

  38. Berrisford AJ (2013) A tale of two transformers: an algorithm for estimating distribution secondary electric parameters using smart meter data, pp 1–6

    Google Scholar 

  39. Jokar P, Arianpoo N, Leung VCM (2016) Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans Smart Grid 7(1):216–26

    Google Scholar 

  40. Kwac J, Rajagopal R (2016) Data-driven targeting of customers for demand response. IEEE Trans Smart Grid 7(5):2199–2207

    Article  Google Scholar 

  41. Peppanen J, Reno MJ, Broderick RJ et al (2016) Distribution system model calibration with big data from AMI and PV inverters. IEEE Trans Smart Grid 7(5):2497–2506

    Article  Google Scholar 

  42. Pan S, Morris T, Adhikari U (2015) Develo** a hybrid intrusion detection system using data mining for power systems. IEEE Trans Smart Grid 6(6):134–143

    Article  Google Scholar 

  43. Bayrak G, Kabalci E (2016) Implementation of a new remote islanding detection method for wind–solar hybrid power plants. Renew Sustain Energy Rev 2016(58):1–15

    Article  Google Scholar 

  44. Li C, Higuma K, Watanabe M et al (2008) Monitoring and estimation of interarea power oscillation mode based on application of CampusWAMS. Turk J Agric Food Sci Technol 3(1)

    Google Scholar 

  45. Dasgupta S, Paramasivam M, Vaidya U et al (2015) PMU-based model-free approach for real-time rotor angle monitoring. IEEE Trans Power Syst 30(5):2818–2819

    Article  Google Scholar 

  46. Liu Y, Zhan L, Zhang Y et al (2015) Wide-area measurement system development at the distribution level: an FNET/GridEye example. IEEE Trans Power Deliv 31(2):1–1

    Google Scholar 

  47. Chai J, Liu Y, Guo J et al (2016) Wide-area measurement data analytics using FNET/GridEye: a review. In: Proceedings of the power systems computation conference, pp 1–6

    Google Scholar 

  48. Zhou D, Guo J, Zhang Y et al (2016) Distributed data analytics platform for wide-area synchrophasor measurement systems. IEEE Trans Smart Grid 7(5):2397–2405

    Article  Google Scholar 

  49. Kamwa J, Beland G, Trudel et al (2006) Wide-area monitoring and control at hydroquébec: past, present and future. In: Proceedings of the power engineering society general meeting

    Google Scholar 

  50. e-terraphasorpoint 3.0. http://www.alstom.com/Global/Grid/Resources/Documents/Automation/NMS/e-terraphasorpoint%203.0.pdf

  51. Siemens (2015) http://www.engerati.com/resources/efficient-network-integrationrenewable-energy-resources-distribution-level

  52. NARI (2015) http://www.naritech.cn/html/jie166.shtm

  53. Singh M, Ali A (2016) Big data analytics with Microsoft HDInsight in 24h. Sams Teach Yourself: Big Data, Hadoop, and Microsoft Azure for better business intelligence

    Google Scholar 

  54. Rusitschka S, Eger K, Gerdes C (2010) Smart grid data cloud: a model for utilizing cloud computing in the smart grid domain. In: Proceedings of the IEEE international conference on smart grid communications, pp, 483–488

    Google Scholar 

  55. Birman KP, Ganesh L, Renesse RV et al (2012) Running smart grid control software on cloud computing architectures. In: Proceedings of the workshop on computational needs for the next generation electric grid

    Google Scholar 

  56. Baek J, Vu QH, Liu JK et al (2015) A secure cloud computing based framework for big data information management of smart grid. IEEE Trans Cloud Comput. 3(2):233–244

    Article  Google Scholar 

  57. Simmhan Y, Prasanna V, Aman S et al (2013) Cloud-based software platform for big data analytics in smart grids. Comput Sci Eng 15(4):38–47

    Article  Google Scholar 

  58. Khan M (2015) Hadoop performance modeling and job optimization for big data analytics. Brunel University, London

    Google Scholar 

  59. Markovic DS, Zivkovic D, Branovic I et al (2013) Smart power grid and cloud computing. Renew Sustain Energy Rev 24(1):566–577

    Article  Google Scholar 

  60. Fang B, Yin X, Tan Y et al (2016) The contributions of cloud technologies to smart grid. Renew Sustain Energy Rev 59:1326–1331

    Article  Google Scholar 

  61. Apache Hadoop. http://hadoop.apache.org/

  62. Zhang Y, Chen S, Wang Q et al (2015) I2MapReduce: incremental MapReduce for mining evolving big data. IEEE Trans Knowl Data Eng 27(7):1

    Article  Google Scholar 

  63. **ng EP, Ho Q, Dai W et al (2015) Petuum: a new platform for distributed machine learning on big data. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1–1

    Google Scholar 

  64. Shyam R, Bharathi GHB, Sachin KS et al (2015) Apache spark a big data analytics platform for smart grid. 21:171–178

    Google Scholar 

  65. Apache Spark. http://spark.apache.org/

  66. Li D (2014) Machine learning aided decision making and adaptive stochastic control in a hierarchical interactive smart grid. Dissertations and theses—grad-works

    Google Scholar 

  67. Wu X, Zhu X, Wu GQ et al (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107

    Article  Google Scholar 

  68. Al-Jarrah OY, Yoo PD, Muhaidat S et al (2015) Efficient machine learning for big data: a review. Big Data Res 2(3):87–93

    Article  Google Scholar 

  69. Khazaei J, Fan L, Jiang W et al (2016) Distributed prony analysis for real-world PMU data. Electr Power Syst Res 133:113–120

    Article  Google Scholar 

  70. Shaker H, Zareipour H, Wood D (2016) A data-driven approach for estimating the power generation of invisible solar sites. IEEE Trans Smart Grid 7(5):2466–2476

    Article  Google Scholar 

  71. Shaker H, Zareipour H, Wood D (2016) Estimating power generation of invisible solar sites using publicly available data. IEEE Trans Smart Grid 7(5):2456–2465

    Article  Google Scholar 

  72. Taieb SB, Huser R, Hyndman RJ et al (2016) Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans Smart Grid 7(5):2448–2455

    Article  Google Scholar 

  73. Partridge M, Calvo RA (1998) Fast dimensionality reduction and simple PCA. Intell Data Anal 2(1–4):203–214

    Article  Google Scholar 

  74. Poekaew P, Champrasert P (2015) Adaptive-PCA: an event-based data aggregation using principal component analysis for WSNs. In: Proceedings of the international conference on smart sensors and application. IEEE

    Google Scholar 

  75. Nuchprayoon S (2014) Electricity load classification using K-means clustering algorithm, Proceedings of the Brunei international conference on engineering and technology. IET, pp 1–5

    Google Scholar 

  76. Yang H, Zhang J, Qiu J et al (2016) A practical pricing approach to smart grid demand response based on load classification. IEEE Trans Smart Grid 1–1

    Google Scholar 

  77. Mu FL, Li HY (2014) Power load classification based on spectral clustering of dual-scale. In: Proceedings of the IEEE international conference on control science and systems engineering. IEEE

    Google Scholar 

  78. Ye M, Liu Y, **ong W et al (2014) Voltage stability research of receiving-end network based on real-time classification load model. In: Proceedings of the IEEE international conference on mechatronics and automation, pp 1866–1870

    Google Scholar 

  79. Che JX, Wang JZ (2014) Short-term load forecasting using a kernel-based support vector regression combination model. Appl Energy 132(11):602–609

    Article  Google Scholar 

  80. Liu N, Tang Q, Zhang J et al (2014) A hybrid forecasting model with parameter optimization for short-term load forecasting of microgrids. Appl Energy 129:336–345

    Article  Google Scholar 

  81. Hernández L, Baladrón C, Aguiar JM et al (2014) Artificial neural networks for short-term load forecasting in microgrids environment. Energy 75(C):252–64

    Google Scholar 

  82. Nickel M, Murphy K, Tresp V et al (2015) A review of relational machine learning for knowledge graphs. Proc IEEE 104(1):11–33

    Article  Google Scholar 

  83. Drumond LR, Diaz-Aviles E, Schmidt-Thieme L et al (2014) Optimizing multi-relational factorization models for multiple target relations. In: Proceedings of the ACM international conference, pp 191–200

    Google Scholar 

  84. Schweppe F, Wildes J (1970) Power system static-state estimation, part I, II, III. IEEE Trans Power Appl Syst PAS-89(1):120–35

    Google Scholar 

  85. Xu X, He X, Ai Q et al (2015) A correlation analysis method for power systems based on random matrix theory. IEEE Trans Smart Grid

    Google Scholar 

  86. Yang Q (2016) Cross-domain data fusion. Computer 49(4):18–18

    Google Scholar 

  87. Diou C, Stephanopoulos G, Panagiotopoulos P et al (2011) Large-scale concept detection in multimedia data using small training sets and cross-domain concept fusion. IEEE Trans Circuits Syst Video Technol 20(12):1808–1821

    Article  Google Scholar 

  88. Tsai CC, Chang-Chien LR, Chen IJ et al (2016) Practical considerations to calibrate generator model parameters using phasor measurements. IEEE Trans Smart Grid 1–11

    Google Scholar 

  89. Mishra DP, Samantaray SR, Joos G (2016) A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans Smart Grid 7(5):2295–2304

    Article  Google Scholar 

  90. Hana S (2012) SAP AG, in-memory database, computer appliance. Vertpress

    Google Scholar 

  91. Kennedy SJ (2012) MCP. M.C.P, Massachusetts institute of technology transforming big data into knowledge: experimental techniques in dynamic visualization. Massachusetts Inst Technol

    Google Scholar 

  92. Cuzzocrea A (2014) Privacy and security of big data: current challenges and future research perspectives. In: Proceedings of the international workshop on privacy and security of big data. ACM, pp 45–47

    Google Scholar 

  93. Bertino E (2015) Big data—security and privacy. In: Proceedings of the IEEE international congress on big data. IEEE

    Google Scholar 

  94. Chiang, M, Zhang T (2016) Fog and IoT: an overview of research opportunities. IEEE Internet of Things 3(6):854–864

    Google Scholar 

  95. Pan J, McElhannon J (2018) Future edge cloud and edge computing for internet of things applications. IEEE Internet of Things J 5(1):439–449

    Google Scholar 

  96. Chen A et al (2017) HCOS: a unified model and architecture for cloud operating system. ZTE Commun Mag 15(4):23–29

    Google Scholar 

  97. Shi W et al (2016) Edge computing: vision and challenges. IEEE Internet of Things J 3(5(Oct.)):637–646

    Google Scholar 

  98. Pan J, McElhannon J (2018) Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J 5(1):439–449

    Article  Google Scholar 

  99. Chen S et al (2017) Fog computing. IEEE Internet Comput 21(2):4–6

    Article  Google Scholar 

  100. Bonomi F, Milito R, Natarajan P et al (2014) Fog computing: a platform for internet of things and analytics. In: Bessis N, Dobre C (eds) Big data and internet of things: a roadmap for smart environments, studies in computational intelligence, vol 546. Springer, Cham

    Google Scholar 

  101. Dolui K, Datta SK (2017) Comparison of edge computing implementations: fog computing, cloudlet and mobile edge computing. In: IEEE Global Internet of Things summit (GIoTS), Geneva, 1–6

    Google Scholar 

  102. Shi W et al (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646

    Article  Google Scholar 

  103. Aazam M, Huh EN (2016) Fog computing: the cloud-IOT/IoE middleware paradigm. IEEE Potentials 35(3):40–44

    Google Scholar 

  104. Hu P et al (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl (Nov.):27–42

    Google Scholar 

  105. Open Fog Consortium, OpenFog reference architecture for fog computing. https://www.openfogconsortium.org/wp-content/ploads/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf

  106. Swiatek P et al (2012) Service composition in knowledge-based SOA systems. N Gener Comput 30(2):165–188

    Article  Google Scholar 

  107. Gubbi J et al (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput. Syst 29(7(Sept.)):1645–1660

    Google Scholar 

  108. Silva DM et al (2016) Villalba. Wirel Pers Commun 91, 1711

    Google Scholar 

  109. Jara AJ et al (2013) Mobile discovery: a global service discovery for the internet of things. In: 27th IEEE international conference on advanced information networking and applications workshops, Barcelona, pp 1325–1330

    Google Scholar 

  110. Stelmach P (2013) Service composition scenarios in the internet of things paradigm, DoCEIS 2013. IFIP Adv Inf Commun Technol 394

    Google Scholar 

  111. Rykowski J et al (2014) Comparison of architectures for service management in IoT and sensor networks by means of OSGi and REST services. In: 2014 Federated conference on computer science and information systems, Warsaw, pp 1207–1214

    Google Scholar 

  112. Lin N, Shi W (2014) The research on Internet of things application architecture based on web. In: 2014 IEEE workshop on advanced research and technology in industry applications (WARTIA), Ottawa, ON, pp 184–187

    Google Scholar 

  113. Freeman H, Zhang T (2016) The emerging era of fog computing and networking. IEEE Commun Mag 54(6):4–5

    Google Scholar 

  114. Yang Y (2017) FA2ST: fog as a service technology. In: 2017 IEEE 41st annual computer software and applications conference (COMPSAC), Turin, pp 708–708

    Google Scholar 

  115. Tran DH et al (2017) OaaS: offload as a service in fog networks. Computing 99:1081

    Article  MathSciNet  Google Scholar 

  116. Shi Y et al (2015) The fog computing service for healthcare. In: 2015 2nd IEEE international symposium on future information and communication technologies for ubiquitous healthcare (Ubi-HealthTech), Bei**g, pp 1–5

    Google Scholar 

  117. Sheng Z et al (2013) A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel Commun 20(6):91–98

    Article  Google Scholar 

  118. Salman T, Jain R (2015) Networking protocols and standards for internet of things, internet of things and data analytics handbook. Wiley

    Google Scholar 

  119. Aijaz A et al (2015) CORPL: a routing protocol for cognitive radio enabled AMI networks. IEEE Trans Smart Grid 6(1(Jan.)):477–485

    Google Scholar 

  120. Basagni S et al (2012) Channel-aware routing for underwater wireless networks. In: 2012 Oceans—Yeosu, Yeosu, pp 1–9

    Google Scholar 

  121. Zhou Z et al (2016) E-CARP: an energy efficient routing protocol for UWSNS in the internet of underwater things. IEEE Sens J 16(11):4072–4082

    Article  Google Scholar 

  122. IEEE Standard for a Convergent Digital Home Network for Heterogeneous Technologies Amendment 1: Support of New MAC/PHYs and Enhancements, IEEE Std 1905.1a-2014, pp 1–52

    Google Scholar 

  123. Wobschall D (2007) IEEE 1451-a universal transducer protocol standard. In: 2007 IEEE autotestcon, Baltimore, MD, pp 359–363

    Google Scholar 

  124. Moritz G et al (2011) A lightweight SOAP over CoAP transport binding for resource constraint networks. In: 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems, Valencia, pp 861–866

    Google Scholar 

  125. Santos GLD et al (2015) A DTLS-based security architecture for the Internet of Things. In: 2015 IEEE symposium on computers and communication (ISCC), Larnaca, pp 809–815

    Google Scholar 

  126. Yassein MB et al (2016) Application layer protocols for the Internet of Things: a survey. In: 2016 International conference on engineering & MIS (ICEMIS), Agadir, pp 1–4

    Google Scholar 

  127. D’Angelo G et al (2016) Simulation of the Internet of Things. In: 2016 International conference on high performance computing and simulation (HPCS), Innsbruck, pp 1–8

    Google Scholar 

  128. Zhao Y et al (2015) NS3-based simulation system in heterogeneous wireless network. In: 11th International conference on wireless communications, networking and mobile computing (WiCOM 2015), Shanghai, pp, 1–6

    Google Scholar 

  129. Osterlind F et al (2006) Cross-Level sensor network simulation with COOJA. In: 31st IEEE conference on local computer networks, Tampa, FL, pp 641–648

    Google Scholar 

  130. Muscalagiu I et al (2013) Large scale multi-agent-based simulation using NetLogo for the multi-robot exploration problem. In: 2013 11th IEEE international conference on industrial informatics (INDIN), Bochum, pp 325–330

    Google Scholar 

  131. Zeng X et al (2017) IOTSim: a simulator for analysing IoT applications. J Syst Architect 72(issue C):93–107

    Google Scholar 

  132. Gupta H et al (2016) ifogsim: a toolkit for modeling and simulation of resource management techniques in internet of things, edge and fog computing environments, tech. report CLOUDS-TR-2016-2. Cloud Computing and Distributed Systems Laboratory, University of Melbourne

    Google Scholar 

  133. Mehdi K et al (2014) CupCarbon: a multi-agent and discrete event wireless sensor network design and simulation tool. In: Proceedings of the 7th international ICST conference on simulation tools and techniques (SIMUTools ’14), Brussels, Belgium, Belgium, pp 126–131

    Google Scholar 

  134. **an X et al (2008) Comparison of OMNeT++ and other simulator for WSN simulation. In: IEEE conference on industrial electronics and applications (ICIEA’08), pp 1439–1443

    Google Scholar 

  135. Ghayvat H et al (2015) Simulation and evaluation of ZigBee based smart home using Qualnet simulator. In: 2015 9th International conference on sensing technology (ICST), Auckland, pp 536–542

    Google Scholar 

  136. Burg A et al (2018) Wireless communication and security issues for cyber-physical systems and the internet-of-things. Proc IEEE 106(1):38–60

    Article  Google Scholar 

  137. Suryani V, Selo, Widyawan (2016) A survey on trust in internet of things. In: 2016 8th International conference on information technology and electrical engineering (ICITEE), Yogyakarta, pp 1–6

    Google Scholar 

  138. Kim H, Lee EA (2017) Authentication and authorization for the internet of things. IT Prof 19(5):27–33

    Google Scholar 

  139. Li X et al (2017) An IoT data communication framework for authenticity and integrity. In: 2017 IEEE/ACM second international conference on internet-of-things design and implementation (IoTDI), Pittsburgh, PA, pp, 159–170

    Google Scholar 

  140. Margelis G et al (2016) Smart attacks on the integrity of the internet of things: avoiding detection by employing game theory. In: 2016 IEEE global communications conference (GLOBECOM), Washington, DC, pp, 1–6

    Google Scholar 

  141. Fotiou N et al (2016) Access control for the internet of things. In: 2016 International workshop on secure internet of things (SIoT), Heraklion, pp 29–38

    Google Scholar 

  142. Mrityunjaya DH et al (2017) Smart transportation. In: 2017 International conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC), Palladam, pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Chemical Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, X., Bao, S. (2023). Big Data in Smart Grid and Edge Computing of the IoT. In: Key Technologies of Internet of Things and Smart Grid. Advanced and Intelligent Manufacturing in China. Springer, Singapore. https://doi.org/10.1007/978-981-99-7603-4_5

Download citation

Publish with us

Policies and ethics

Navigation