Kinematic and Static Analysis of Flexible Link Tensegrity Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14273))

Included in the following conference series:

  • 666 Accesses

Abstract

Replacement of rigid bars with slender flexible links in tensegrity robots improves the kinematic performance of the mechanism, and broadens its potential applications. Nonetheless, most existing analysis methods for tensegrity robots do not account for the large deformations of flexible links. This paper presents a general modeling and analysis approach for flexible link tensegrity robots. The interconnection between flexible links and cables is defined using connectivity and coefficient matrices. The flexible link tensegrity robot is modeled as a group of hyper-redundant mechanisms constrained by cables, utilizing the discretization-based method. Subsequently, the analytical model of flexible link tensegrity robots is formulated as a set of nonlinear algebraic equations. Using this model, the Newton-Raphson algorithm is employed to identify equilibrium configurations in a variety of given conditions. Finally, a prototype of a planar flexible link tensegrity robot was constructed, and preliminary experiments were conducted to evaluate the effectiveness of the proposed methods. The experimental results demonstrate the presented method in this study can achieve precise robot control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Bi, Q., Yue, X., Jiang, W., Yang, B., Li, Y.: A review on tensegrity structures-based robots. Mech. Mach. Theory 168, 104571 (2022)

    Article  Google Scholar 

  2. Shah, D.S., et al.: Tensegrity robotics. Soft Robot. 9(4), 639–656 (2022)

    Article  Google Scholar 

  3. Caluwaerts, K., Bruce, J., Friesen, J.M., SunSpiral, V.: State estimation for tensegrity robots. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1860–1865. IEEE (2016)

    Google Scholar 

  4. Campanaro, L.: Sensor integration and controller design for a tensegrity-modular robot, Ph. D. thesis, Politecnico di Torino (2018)

    Google Scholar 

  5. Pugh, A.: An Introduction to Tensegrity. University of California Press (1976)

    Google Scholar 

  6. Fraldi, M., Palumbo, S., Carotenuto, A.R., Cutolo, A., Deseri, L., Pugno, N.: Buckling soft tensegrities: fickle elasticity and configurational switching in living cells. J. Mech. Phys. Solids 124, 299–324 (2019)

    Article  MathSciNet  Google Scholar 

  7. Dai, X., Liu, Y., Wang, W., Song, R., Li, Y., Zhao, J.: Design and experimental validation of a worm-like tensegrity robot for in-pipe locomotion. J. Bionic Eng. 20, 1–15 (2022)

    Google Scholar 

  8. Hawkes, E.W., et al.: Engineered jumpers overcome biological limits via work multiplication. Nature 604(7907), 657–661 (2022)

    Article  Google Scholar 

  9. Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18(4), 209–223 (2003)

    Article  Google Scholar 

  10. Connelly, R., Terrell, M.: Globally rigid symmetric tensegrities. Structural Topology 1995 núm 21 (1995)

    Google Scholar 

  11. Pellegrino, S.: Mechanics of kinematically indeterminate structures, Ph. D. thesis, University of Cambridge (1986)

    Google Scholar 

  12. Motro, R.: Forms and forces in tensegrity systems. In: Proceedings of Third International Conference on Space Structures, 1984. Elsevier (1984)

    Google Scholar 

  13. Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ingenieur-archiv 40, 145–158 (1971)

    Article  Google Scholar 

  14. Friesen, J., Pogue, A., Bewley, T., de Oliveira, M., Skelton, R., Sunspiral, V.: DuCTT: a tensegrity robot for exploring duct systems. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4222–4228. IEEE (2014)

    Google Scholar 

  15. Sabelhaus, A.P., et al.: Inverse statics optimization for compound tensegrity robots. IEEE Robot. Autom. Lett. 5(3), 3982–3989 (2020)

    Article  Google Scholar 

  16. Dong, W., Stafford, P.J., Ruiz-Teran, A.M.: Inverse form-finding for tensegrity structures. Comput. Struct. 215, 27–42 (2019)

    Article  Google Scholar 

  17. Lee, S., Lieu, Q.X., Vo, T.P., Lee, J.: Deep neural networks for form-finding of tensegrity structures. Mathematics 10(11), 1822 (2022)

    Article  Google Scholar 

  18. Connelly, R.: Handbook of Convex Geometry (1993)

    Google Scholar 

  19. Arsenault, M., Gosselin, C.M.: Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism. Mech. Mach. Theory 41(9), 1072–1089 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arsenault, M., Gosselin, C.M.: Kinematic and static analysis of a three-degree-of-freedom spatial modular tensegrity mechanism. Int. J. Robot. Res. 27(8), 951–966 (2008)

    Article  Google Scholar 

  21. Chen, G., Zhang, Z., Wang, H.: A general approach to the large deflection problems of spatial flexible rods using principal axes decomposition of compliance matrices. J. Mech. Robot. 10(3), 031012 (2018)

    Article  Google Scholar 

  22. Chen, G., Kang, Y., Liang, Z., Zhang, Z., Wang, H.: Kinetostatics modeling and analysis of parallel continuum manipulators. Mech. Mach. Theory 163, 104380 (2021)

    Article  Google Scholar 

  23. Lindstrom, M.J., Bates, D.M.: Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Am. Stat. Assoc. 83(404), 1014–1022 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Lee, W., Johnson, Riess, R.D.: Numerical Analysis. Addison-Wesley, Reading, MA (1977)

    MATH  Google Scholar 

Download references

Acknowledgement

This research work was supported in part by the National Key R &D program of China under the Grant 2019YFA0709001, and the National Natural Science Foundation of China under the Grant 52022056 and 51875334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genliang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, Y., Chen, J., Kong, L., Wang, H., Chen, G. (2023). Kinematic and Static Analysis of Flexible Link Tensegrity Robots. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation