Symmetric Secret Key-Based Quantum Key and Its Distribution Over the Networks

  • Conference paper
  • First Online:
Advances in IoT and Security with Computational Intelligence (ICAISA 2023)

Abstract

Quantum key distribution (QKD) is an information-theoretically secure symmetric secret-key negotiation system. QKD stands for “quantum key distribution.” Recently, QKD networks have advanced to the point where they have graduated from the domain of theoretical study and are beginning to make their way into a few practical applications. A network is formed by QKD nodes, which can communicate with one another either wirelessly or utilizing light-speed optical connections. Any two QKD nodes have the ability to negotiate the distribution of secret keys to a large number of users located in a variety of different places. This is done to provide both long-term security and forward secrecy. Following the presentation of a foundational overview of QKD and a few developments in QKD, and in this study, we will look into how QKD networks have evolved and where they have found practical use. In conclusion, we make some proposals as to the direction that future research should go, as well as some recommendations for the most effective methods of constructing QKD networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 242.64
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao Y, Zhao Y, Wang Q, Zhang J, Ng Sx, Hanzo L (2022) The evolution of quantum key distribution networks: on the road to the qinternet’. IEEE Commun Surv & Tutor 24(2):839–94

    Google Scholar 

  2. Accessed 13 Dec 2022. https://www.etsi.org/images/files/ETSIWhitePapers/

  3. Schreiber LR, Bluhm H (2018) Toward a silicon-based quantum computer. Science (New York, N.Y.)

    Google Scholar 

  4. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C (2010) JL O/’Brien quantum computers. Nature 464(7285):45–53

    Article  Google Scholar 

  5. Debnath S, Linke NM, Figgatt C, Landsman KA, Wright K, Monroe C (2016) Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614):63–66

    Article  Google Scholar 

  6. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–10

    Google Scholar 

  7. Gong M, Wang S, Zha C, Chen MC, Huang HL, Wu Y, Zhu Q, et al (2021) Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science (New York, N.Y.) 372(6545):948–952

    Google Scholar 

  8. Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T et al (2009) The SECOQC quantum key distribution network in Vienna. New J Phys 11(7): 075001.

    Google Scholar 

  9. Tang YL, Yin HL, Zhao Q, Liu H, Sun XX, Huang MQ, Zhang WJ et al (2016) Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys Rev X 6(1)

    Google Scholar 

  10. Briegel H-J, Dür W, Cirac JI, Zoller P (1998) Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett 81(26):5932–35

    Google Scholar 

  11. Meter R, Touch J (2013) Designing quantum repeater networks. IEEE Commun Mag 51(8):64–71

    Article  Google Scholar 

  12. Overview on networks supporting quantum key distribution (2019). Int Telecommun Union

    Google Scholar 

  13. Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S et al (2011) Field test of quantum key distribution in the tokyo QKD network. Optics Express 19(11):10387–10409

    Google Scholar 

  14. Tajima A (2017) Quantum key distribution network for multiple applications. Quantum Sci. Technol 2(3)

    Google Scholar 

  15. Cao Y, Zhao Y, Lin R, **aosong Y, Zhang J, Chen J (2019) Multi-tenant secret-key assignment over quantum key distribution networks. Opt Express 27(3):2544–2561

    Article  Google Scholar 

  16. Cao Y, Zhao Y, Wang J, **aosong Y, Ma Z, Zhang J (2019) SDQaaS: software defined networking for quantum key distribution as a service. Opt Express 27(5):6892–6909

    Article  Google Scholar 

  17. Dynes JF, Wonfor A, Tam WW-S, Sharpe AW, Takahashi R, Lucamarini M, Plews A et al (2019) Cambridge quantum network. NPJ Quantum Inf 5(1)

    Google Scholar 

  18. Ahlswede R, Cai, N, Li SYR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Google Scholar 

  19. Xu FH, Wen H, Han ZF, Guo GC Network coding in trusted relay based quantum network. Accessed 14 Dec 2022

    Google Scholar 

  20. Nguyen HV, Trinh PV, Pham AT, Babar Z, Alanis D, Botsinis P, Chandra D, Ng SX, Hanzo L (2017) Network coding aided cooperative quantum key distribution over free-space optical channels. IEEE Access: Pract Innov Open Solut 5:12301–12317

    Google Scholar 

  21. Kato G, Owari M, Hayashi M (2021) Single-shot secure quantum network coding for general multiple unicast network with free one-way public communication. IEEE Trans Inf Theory 67(7):4564–4587

    Article  MathSciNet  MATH  Google Scholar 

  22. Shang T, Li J, Liu J-W (2016) Secure quantum network coding for controlled repeater networks. Quantum Inf Process 15(7):2937–2953

    Article  MathSciNet  MATH  Google Scholar 

  23. Satoh T, Ishizaki K, Nagayama S, Van Meter R (2016) Analysis of quantum network coding for realistic repeater networks. Phys Rev A 93(3):032302

    Google Scholar 

  24. Lucamarini M, Yuan ZL, Dynes JF, Shields AJ (2018) Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705):400–403

    Google Scholar 

  25. Ma X, Zeng P, Zhou H (2019) Erratum: phase-matching quantum key distribution [phys. rev. x 8, 031043 (2018)]. Phys Rev X 9(2):029901

    Google Scholar 

  26. Li Q, Wang Y, Mao H, Yao J, Han Q (2020) Mathematical model and topology evaluation of quantum key distribution network. Opt Express 28(7):9419–9434

    Article  Google Scholar 

  27. Wang Y, Li Q, Mao H, Han Q, Huang F, Xu H (2020) Topological optimization of hybrid quantum key distribution networks. Opt Express 28(18). 26348-26358

    Google Scholar 

  28. Yang YH, Li PY, Ma SZ, Qian XC, Zhang KY, Wang LJ, Zhang WL et al (2021) All optical metropolitan quantum key distribution network with post-quantum cryptography authentication. Opt Express 29(16):25859–67

    Google Scholar 

  29. Gao Y-L, Chen X-B, Chen Y-L, Sun Y, Niu X-X, Yang Y-X (2018) A secure cryptocurrency scheme based on post-quantum blockchain. IEEE Access 6:27205–27213

    Article  Google Scholar 

  30. Li C-Y, Chen X-B, Chen Y-L, Hou Y-Y, Li J (2018) A new lattice-based signature scheme in post-quantum blockchain network. IEEE Access 7:2026–2033

    Article  Google Scholar 

  31. Fernandez-Carames TM, Fraga-Lamas P (2020) Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8:21091–21116

    Article  Google Scholar 

  32. Kiktenko EO (2018) Quantum-secured blockchain. Quantum Sci Technol 3(3)

    Google Scholar 

  33. Sun X, Sopek M, Wang Q, Kulicki P (2019) Towards quantum-secured permissioned blockchain: signature, consensus, and logic. Entropy 21(9):887

    Article  MathSciNet  Google Scholar 

  34. Fernandez-Carames TM (2020) From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the internet of things. IEEE Internet Things J 7(7):6457–6480

    Article  Google Scholar 

  35. Ebrahimi S, Bayat-Sarmadi S, Mosanaei-Boorani H (2019) Postquantum cryptoprocessors optimized for edge and resource-constrained devices in IoT. IEEE Internet Things J 6(3):5500–5507

    Article  Google Scholar 

  36. Liu Z, Choo KKR, Grossschadl J (2018) Securing edge devices in the post-quantum internet of things using lattice-based cryptography’. IEEE Commun Mag 56(2):158–62

    Google Scholar 

  37. Ottaviani C, Woolley MJ, Erementchouk M, Federici JF, Mazumder P, Pirandola S, Weedbrook C (2020) Terahertz Quantum Cryptography. IEEE J Sel Areas Commun 38(3):483–495. https://doi.org/10.1109/jsac.2020.2968973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avdhesh Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, A., Gupta, V., Kumar, D., Kumar, V. (2023). Symmetric Secret Key-Based Quantum Key and Its Distribution Over the Networks. In: Mishra, A., Gupta, D., Chetty, G. (eds) Advances in IoT and Security with Computational Intelligence. ICAISA 2023. Lecture Notes in Networks and Systems, vol 755. Springer, Singapore. https://doi.org/10.1007/978-981-99-5085-0_17

Download citation

Publish with us

Policies and ethics

Navigation