Analysis of Survivable Wireless IoT Meshes Using Graph Invariant Technique

  • Conference paper
  • First Online:
Intelligent Systems and Sustainable Computing (ICISSC 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 363))

  • 156 Accesses

Abstract

The density of wireless and optical networks, which offer a reliable connection for applications with ever-increasing capacity and stringent latency requirements, is placing further strain on backhaul industrial IoT networks. Future industrial IoT networks will not be able to depend on star and ring strategies since they have serious issues with resilience and long-term survival. We can embody the objective of optimisation as well as its constraints in graph invariants by addressing topology optimisation as a problem of graph optimisation in this work. Our graph theoretic technique for backhaul IoT architecture uses a mathematical strategy that offers a more organised substitute to the traditional manner. We may employ well-known graph invariants to enhance our base backhaul topologies and create robust wireless and optical backhaul networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.S. Amiripalli, V. Bobba, An optimal TGO topology method for a scalable and survivable network in IOT communication technology. Wirel. Pers. Commun. 107(2), 1019–1040 (2019)

    Article  Google Scholar 

  2. S. He, Y. Liu, F. Ye, D. Guo, Research on complex network layout algorithm based on grid point matching method. J. Complex Netw. 6(1), 145–154 (2018)

    Article  Google Scholar 

  3. A.Y. Yazıcıoğlu, M. Egerstedt, J.S. Shamma, Decentralized formation of random regular graphs for robust multi-agent networks, in 53rd IEEE Conference on Decision and Control (IEEE, 2014), pp. 595–600

    Google Scholar 

  4. N.-H. Bao, G.-Q. Su, Y.-K. Wu, M. Kuang, D.-Y. Luo, Reliability-sustainable network survivability scheme against disaster failures, in 2017 International Conference on Computer, Information and Telecommunication Systems (CITS) (IEEE, 2017), pp. 334–337.

    Google Scholar 

  5. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.-L. Barabási, Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Google Scholar 

  7. M.S. Jitendra, P. Naga Srinivasu, A. Shanmuk Srinivas, A. Nithya, S.K. Kandulapati, Crack detection on concrete images using classification techniques in machine learning. J. Crit. Rev. 7(9), 1236–1241 (2020)

    Google Scholar 

  8. M.L. Bertotti, G. Modanese, The configuration model for Barabasi-Albert networks. Appl. Netw. Sci. 4(1), 1–13 (2019)

    Google Scholar 

  9. J.R. Thota, M. Kothuru, A. Shanmuk Srinivas, M.S.N.V. Jitendra,Monitoring diabetes occurrence probability using classification technique with a UI. Int. J. Sci. Technol. Res. 9(4), 38–41 (2020)

    Google Scholar 

  10. M. Aftiana, D. Indriati,On edge irregular total k-labeling and total edge irregularity strength of barbell graphs. J. Phys.: Conf. Ser. 1306(1), 012031 (2019)

    Google Scholar 

  11. S.V. Siva Rama Raju, I.H. Maharajah Rao, S.S. Amiripalli, On path connector sets. Int. J. Math. Soft. Comput. 2(2), 55–65 (2012)

    Google Scholar 

  12. D. Cullina, N. Kiyavash, P. Mittal, H. Vincent Poor, Partial recovery of Erdős-Rényi graph alignment via k-core alignment. ACM SIGMETRICS Perform. Eval. Rev. 48(1), 99–100 (2020)

    Google Scholar 

  13. A.-L. Barabási, E. Ravasz, T. Vicsek, Deterministic scale-free networks. Physica A 299(3–4), 559–564 (2001)

    Article  MATH  Google Scholar 

  14. S.S. Amiripalli, V. Bobba, Trimet graph optimization (TGO) based methodology for scalability and survivability in wireless networks. Int. J. Adv. Trends Comput. Sci. Eng. 8(6), 3454–3460 (2019)

    Article  Google Scholar 

  15. S.S. Amiripalli, V. Bobba, A Fibonacci based TGO methodology for survivability in ZigBee topologies. Int. J. Sci. Technol. Res. 9(2), 878–881 (2020)

    Google Scholar 

  16. S.S. Amiripalli, V. Bobba, S.P. Potharaju, A novel trimet graph optimization (TGO) topology for wireless networks, in Cognitive Informatics and Soft Computing: Proceeding of CISC 2017 (Springer, Singapore, 2019), pp. 75–82

    Google Scholar 

  17. M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

    Article  Google Scholar 

  18. M. Pal, P. Sahu, S. Jaiswal, LevelTree: a new scalable data center networks topology, in 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (IEEE, 2018), pp. 482–486

    Google Scholar 

  19. D. Mateo, N. Horsevad, V. Hassani, M. Chamanbaz, R. Bouffanais, Optimal network topology for responsive collective behavior. Sci. Adv. 5(4), eaau0999 (2019)

    Google Scholar 

  20. C.P. Dettmann, G. Knight, Symmetric motifs in random geometric graphs. J. Complex Netw. 6(1), 95–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Santos, K. Koslowski, J. Daube, H. Ghazzai, A. Kassler, K. Sakaguchi, T. Haustein, MmWave backhaul testbed configurability using software-defined networking. Wirel. Commun. Mobile Comput. 2019, 1–24 (2019)

    Google Scholar 

  22. V. Frascolla, C.K. Dominicini, M.H.M. Paiva, G. Caporossi, M.A. Marotta, M.R.N. Ribeiro, M.E.V. Segatto, M. Martinello, M.E. Monteiro, C.B. Both, Optimizing C-RAN backhaul topologies: a resilience-oriented approach using graph invariants. Appl. Sci. 9(1), 136 (2019)

    Google Scholar 

  23. Z. Tan, H. Qu, J. Zhao, G. Ren, W. Wang, Low-complexity networking based on joint energy efficiency in ultradense mmWave backhaul networks. Trans. Emerg. Telecommun. Technol. 30(1), e3508 (2019)

    Article  Google Scholar 

  24. P.N. Srinivasu, N. Norwawi, S.S. Amiripalli, P. Deepalakshmi, Secured compression for 2D medical images through the manifold and fuzzy trapezoidal correlation function. Gazi Univ. J. Sci. 35, 1–1 (2021)

    Google Scholar 

  25. X. Fu, Y. Yang, H. Yao, Analysis on invulnerability of wireless sensor network towards cascading failures based on coupled map lattice. Complexity 2018, 1–14 (2018)

    Google Scholar 

  26. V.N. Kamalesh et al., On the design of fault tolerant k-connected network topologies. IJIMT 6(5), 339–342 (2015)

    Google Scholar 

  27. D. Tsiotas, Detecting different topologies immanent in scale-free networks with the same degree distribution. Proc. Natl. Acad. Sci. 116(14), 6701–6706 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Sohn, Small-world and scale-free network models for IoT systems. Mob. Inform. Syst. 2017, 1–9 (2017)

    Google Scholar 

  29. I.H. Naga Raja Rao, S.V. Siva Rama Raju, Global neighbourhood domination. Proyecciones J. Math. 33(1), 1–25 (2014)

    Google Scholar 

  30. A. Asmiati, I.K.S. Gunce Yana, L. Yulianti, On the locating chromatic number of subdivision of barbell graphs containing generalized Petersen graph. IJCSNS Int. J. Comput. Sci. Netw. Secur. 19(7), 45–50 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuk Srinivas Amiripalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siva Rama Raju, S.V., Amiripalli, S.S. (2023). Analysis of Survivable Wireless IoT Meshes Using Graph Invariant Technique. In: Reddy, V.S., Prasad, V.K., Wang, J., Rao Dasari, N.M. (eds) Intelligent Systems and Sustainable Computing. ICISSC 2022. Smart Innovation, Systems and Technologies, vol 363. Springer, Singapore. https://doi.org/10.1007/978-981-99-4717-1_51

Download citation

Publish with us

Policies and ethics

Navigation