Producing N-Containing Chemicals from Biomass for High Performance Thermosets

  • Chapter
  • First Online:
Production of N-containing Chemicals and Materials from Biomass

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 12))

  • 223 Accesses

Abstract

Chemicals containing nitrogen atoms or N-containing chemicals (NCCs) are pivotal building blocks for polymers and composites that have high interest in technological fields, especially when they can be endowed with special properties and new functionalities. To alleviate the dependence on petroleum resources, efforts have focused on sustainable production of NCCs from biomass and its derivatives. In this chapter, production of NCCs from biomass for thermosets are introduced. Thermosets can form highly cross-linked network after curing reactions, and they have been widely applied in the fields of coatings, adhesives, advanced composites and electronic packaging due to their remarkable integrated properties.

This chapter provides a systematic overview regarding recent advances in sustainable high-performance thermosets derived from NCCs. Firstly, the origins and access of bio-based feedstocks for NCCs applied in thermoset are discussed. Then, the synthesis and structure-property relationship of epoxy resin, benzoxazine, polyurethane and other typical bio-based thermosets with N-containing chemicals are reviewed. Finally, some thoughts about the future of the synthesis of bio-based thermosets bearing NCCs and their various applications are presented. The objective of this chapter is to help us to have a deeper understanding of the impact of the introduction of NCCs on the properties of polymer materials, thus promoting the rapid development of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maschmeyer T, Luque R, Selva M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem Soc Rev. 2020;49:4527–63. https://doi.org/10.1039/c9cs00653b.

    Article  CAS  Google Scholar 

  2. Jagadeesh Rajenahally V, Murugesan K, Alshammari Ahmad S, Neumann H, Pohl M-M, Radnik J, Beller M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science. 2017;358(6361):326–32. https://doi.org/10.1126/science.aan6245.

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Li H, Fang Z. Hydrothermal amination of biomass to nitrogenous chemicals. Green Chem. 2021;23(18):6675–97. https://doi.org/10.1039/d1gc02505h.

    Article  CAS  Google Scholar 

  4. Chen X, Song S, Li H, Gozaydin G, Yan N. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc Chem Res. 2021;54(7):1711–22. https://doi.org/10.1021/acs.accounts.0c00842.

    Article  CAS  PubMed  Google Scholar 

  5. Scodeller I, Mansouri S, Morvan D, Muller E, de Oliveira VK, Wischert R, Jerome F. Synthesis of renewable meta-xylylenediamine from biomass-derived furfural. Angew Chem Int Ed Engl. 2018;57(33):10510–4. https://doi.org/10.1002/anie.201803828.

    Article  CAS  PubMed  Google Scholar 

  6. Ragauskas Arthur J, Williams Charlotte K, Davison Brian H, Britovsek G, Cairney J, Eckert Charles A, Frederick William J, Hallett Jason P, Leak David J, Liotta Charles L, Mielenz Jonathan R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–9. https://doi.org/10.1126/science.1114736.

    Article  CAS  PubMed  Google Scholar 

  7. Pelckmans M, Renders T, Van de Vyver S, Sels BF. Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 2017;19(22):5303–31. https://doi.org/10.1039/c7gc02299a.

    Article  CAS  Google Scholar 

  8. Llevot A, Grau E, Carlotti S, Grelier S, Cramail H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun. 2016;37(1):9–28. https://doi.org/10.1002/marc.201500474.

    Article  CAS  PubMed  Google Scholar 

  9. Fache M, Boutevin B, Caillol S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng. 2015;4(1):35–46. https://doi.org/10.1021/acssuschemeng.5b01344.

    Article  CAS  Google Scholar 

  10. Savonnet E, Le Coz C, Grau E, Grelier S, Defoort B, Cramail H. Divanillin-based aromatic amines: synthesis and use as curing agents for fully vanillin-based epoxy thermosets. Front Chem. 2019;7:606. https://doi.org/10.3389/fchem.2019.00606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mora AS, Tayouo R, Boutevin B, David G, Caillol S. Vanillin-derived amines for bio-based thermosets. Green Chem. 2018;20(17):4075–84. https://doi.org/10.1039/c8gc02006j.

    Article  CAS  Google Scholar 

  12. Qi Y, Weng Z, Kou Y, Song L, Li J, Wang J, Zhang S, Liu C, Jian X. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem Eng J. 2021;406:126881. https://doi.org/10.1016/j.cej.2020.126881.

    Article  CAS  Google Scholar 

  13. Bhusal RP, Sperry J. Flexible synthesis of diverse N-heterocycles from substrates attainable from biomass. Green Chem. 2016;18(8):2453–9. https://doi.org/10.1039/c5gc02837j.

    Article  CAS  Google Scholar 

  14. Kallmeier F, Dudziec B, Irrgang T, Kempe R. Manganese-catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols. Angew Chem Int Ed Engl. 2017;56(25):7261–5. https://doi.org/10.1002/anie.201702543.

    Article  CAS  PubMed  Google Scholar 

  15. Qi Y, Wang J, Kou Y, Pang H, Zhang S, Li N, Liu C, Weng Z, Jian X. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat Commun. 2019;10(1):2107. https://doi.org/10.1038/s41467-019-10178-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng B, Wu H, Song J, Wu W, Mei X, Zhang K, Xu C, Xu J, He M, Han B. Production of alkoxyl-functionalized cyclohexylamines from lignin-derived guaiacols. Green Chem. 2021;23(21):8441–7. https://doi.org/10.1039/d1gc02790e.

    Article  CAS  Google Scholar 

  17. Li J, Weng Z, Cao Q, Qi Y, Lu B, Zhang S, Wang J, Jian X. Synthesis of an aromatic amine derived from biomass and its use as a feedstock for versatile epoxy thermoset. Chem Eng J. 2022;433:134512. https://doi.org/10.1016/j.cej.2022.134512.

    Article  CAS  Google Scholar 

  18. Zhang T, Li W, Xu Z, Liu Q, Ma Q, Jameel H, Chang HM, Ma L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in gamma-valerolactone. Bioresour Technol. 2016;209:108–14. https://doi.org/10.1016/j.biortech.2016.02.108.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Yang X, Zheng H, Li X, Zhu Y, Li Y. Mechanistic insights on catalytic conversion fructose to furfural on beta zeolite via selective carbon-carbon bond cleavage. Mol Catal. 2019;463:130–9. https://doi.org/10.1016/j.mcat.2018.11.022.

    Article  CAS  Google Scholar 

  20. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López GM. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci. 2016;9(4):1144–89. https://doi.org/10.1039/c5ee02666k.

    Article  CAS  Google Scholar 

  21. Senthamarai T, Murugesan K, Schneidewind J, Kalevar NV, Baumann W, Neumann H, Kamer PCJ, Beller M, Jagadeesh RV. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Nat Commun. 2018;9(1):4123. https://doi.org/10.1038/s41467-018-06416-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petri A, Masia G, Piccolo O. Biocatalytic conversion of 5-hydroxymethylfurfural: synthesis of 2,5-bis (hydroxymethyl)furan and 5-(hydroxymethyl)furfurylamine. Catal Commun. 2018;114:15–8. https://doi.org/10.1016/j.catcom.2018.05.011.

    Article  CAS  Google Scholar 

  23. Li X, Ma J, Jia X, ** promoted aerobic Amidation of 5-hydroxymethylfurfural to 2,5-furandicarboxamide over cryptomelane. ACS Sustain Chem Eng. 2018;6(6):8048–54. https://doi.org/10.1021/acssuschemeng.8b01617.

    Article  CAS  Google Scholar 

  24. Wang X, Chen W, Li Z, Zeng X, Tang X, Sun Y, Lei T, Lin L. Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural. J Energy Chem. 2018;27(1):209–14. https://doi.org/10.1016/j.jechem.2017.06.015.

    Article  CAS  Google Scholar 

  25. **en D, Schwaderer JB, Walter J, Wen J, Murray G, Vogt D, Mecking S. Diamines for polymer materials via direct amination of lipid- and lignocellulose-based alcohols with NH3. ChemCatChem. 2018;10(14):3027–33. https://doi.org/10.1002/cctc.201800365.

    Article  CAS  Google Scholar 

  26. Drover MW, Omari KW, Murphy JN, Kerton FM. Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine. RSC Adv. 2012;2(11):4642–4. https://doi.org/10.1039/c2ra20578e.

    Article  CAS  Google Scholar 

  27. **e S, Jia C, Go Ong SS, Wang Z, Zhu MJ, Wang Q, Yang Y, Lin H. A shortcut route to close nitrogen cycle: bio-based amines production via selective deoxygenation of chitin monomers over Ru/C in acidic solutions. iScience. 2020;23(5):101096. https://doi.org/10.1016/j.isci.2020.101096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao S, Liu Y, Shi L, Zhu W, Wang H. N-Acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects. Green Chem. 2022;24(2):493–509. https://doi.org/10.1039/d1gc03725k.

    Article  CAS  Google Scholar 

  29. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001.

    Article  CAS  Google Scholar 

  30. Claes L, Verduyckt J, Stassen I, Lagrain B, De Vos DE. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles. Chem Commun (Camb). 2015;51(30):6528–31. https://doi.org/10.1039/c5cc00181a.

    Article  CAS  PubMed  Google Scholar 

  31. Scott E, Peter F, Sanders J. Biomass in the manufacture of industrial products--the use of proteins and amino acids. Appl Microbiol Biotechnol. 2007;75(4):751–62. https://doi.org/10.1007/s00253-007-0932-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Claes L, Janssen M, De Vos DE. Organocatalytic decarboxylation of amino acids as a route to bio-based amines and amides. ChemCatChem. 2019;11(17):4297–306. https://doi.org/10.1002/cctc.201900800.

    Article  CAS  Google Scholar 

  33. Sebastian J, Zheng M, Jiang Y, Zhao Y, Wang H, Song Z, Li X, Pang J, Zhang T. One-pot conversion of lysine to caprolactam over Ir/H-Beta catalysts. Green Chem. 2019;21(9):2462–8. https://doi.org/10.1039/c9gc00415g.

    Article  CAS  Google Scholar 

  34. **e S, Jia C, Wang Z, Ong SSG, Zhu M, Lin H. Mechanistic insight into selective deoxygenation of l-lysine to produce biobased amines. ACS Sustain Chem Eng. 2020;8(31):11805–17. https://doi.org/10.1021/acssuschemeng.0c04052.

    Article  CAS  Google Scholar 

  35. Liu X, Zhang J. High-performance biobased epoxy derived from rosin. Polym Int. 2010;59(5):607–9. https://doi.org/10.1002/pi.2781.

    Article  CAS  Google Scholar 

  36. Garrison MD, Savolainen MA, Chafin AP, Baca JE, Bons AM, Harvey BG. Synthesis and characterization of high-performance, bio-based epoxy-amine networks derived from resveratrol. ACS Sustain Chem Eng. 2020;8(37):14137–49. https://doi.org/10.1021/acssuschemeng.0c04816.

    Article  CAS  Google Scholar 

  37. Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Biobased amines: from synthesis to polymers; present and future. Chem Rev. 2016;116(22):14181–224. https://doi.org/10.1021/acs.chemrev.6b00486.

    Article  CAS  PubMed  Google Scholar 

  38. **e W, Huang S, Liu S, Zhao J. Imine-functionalized biomass-derived dynamic covalent thermosets enabled by heat-induced self-crosslinking and reversible structures. Chem Eng J. 2021;404:126598. https://doi.org/10.1016/j.cej.2020.126598.

    Article  CAS  Google Scholar 

  39. Yao Z, Qian L, Qiu Y, Chen Y, Xu B, Li J. Flame retardant and toughening behaviors of bio-based DOPO-containing curing agent in epoxy thermoset. Polym Adv Technol. 2019;31(3):461–71. https://doi.org/10.1002/pat.4782.

    Article  CAS  Google Scholar 

  40. Zhou S, Tao R, Dai P, Luo Z, He M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polym Compos. 2020;41(5):2025–35. https://doi.org/10.1002/pc.25517.

    Article  CAS  Google Scholar 

  41. Nabipour H, Wang X, Song L, Hu Y. A high performance fully bio-based epoxy thermoset from a syringaldehyde-derived epoxy monomer cured by furan-derived amine. Green Chem. 2021;23(1):501–10. https://doi.org/10.1039/d0gc03451g.

    Article  CAS  Google Scholar 

  42. Niu H, Nabipour H, Wang X, Song L, Hu Y. Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission. ACS Sustain Chem Eng. 2021;9(15):5268–77. https://doi.org/10.1021/acssuschemeng.0c08302.

    Article  CAS  Google Scholar 

  43. **e W, Huang S, Tang D, Liu S, Zhao J. Biomass-derived Schiff base compound enabled fire-safe epoxy thermoset with excellent mechanical properties and high glass transition temperature. Chem Eng J. 2020;394:123667. https://doi.org/10.1016/j.cej.2019.123667.

    Article  CAS  Google Scholar 

  44. Wu JN, Chen L, Fu T, Zhao HB, Guo DM, Wang XL, Wang YZ. New application for aromatic Schiff base: high efficient flame-retardant and anti-drip** action for polyesters. Chem Eng J. 2018;336:622–32. https://doi.org/10.1016/j.cej.2017.12.047.

    Article  CAS  Google Scholar 

  45. Nabipour H, Niu H, Wang X, Batool S, Hu Y. Fully bio-based epoxy resin derived from vanillin with flame retardancy and degradability. React Funct Polym. 2021;168:105034. https://doi.org/10.1016/j.reactfunctpolym.2021.105034.

    Article  CAS  Google Scholar 

  46. Tripathy R, Ojha U, Faust R. Polyisobutylene modified bisphenol a diglycidyl ether based epoxy resins possessing improved mechanical properties. Macromolecules. 2011;44(17):6800–9. https://doi.org/10.1021/ma201081y.

    Article  CAS  Google Scholar 

  47. Tang Z, Huang J, Guo B, Zhang L, Liu F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules. 2016;49(5):1781–9. https://doi.org/10.1021/acs.macromol.5b02756.

    Article  CAS  Google Scholar 

  48. **ao L, Huang J, Wang Y, Chen J, Liu Z, Nie X. Tung oil-based modifier toughening epoxy resin by sacrificial bonds. ACS Sustain Chem Eng. 2019;7(20):17344–53. https://doi.org/10.1021/acssuschemeng.9b04284.

    Article  CAS  Google Scholar 

  49. Chen X, Chen S, Xu Z, Zhang J, Miao M, Zhang D. Degradable and recyclable bio-based thermoset epoxy resins. Green Chem. 2020;22(13):4187–98. https://doi.org/10.1039/d0gc01250e.

    Article  CAS  Google Scholar 

  50. Fang Z, Nikafshar S, Hegg EL, Nejad M. Biobased divanillin as a precursor for formulating biobased epoxy resin. ACS Sustain Chem Eng. 2020;8(24):9095–103. https://doi.org/10.1021/acssuschemeng.0c02351.

    Article  CAS  Google Scholar 

  51. Wu J, Yu X, Zhang H, Guo J, Hu J, Li M-H. Fully biobased vitrimers from glycyrrhizic acid and soybean oil for self-healing, shape memory, weldable, and recyclable materials. ACS Sustain Chem Eng. 2020;8(16):6479–87. https://doi.org/10.1021/acssuschemeng.0c01047.

    Article  CAS  Google Scholar 

  52. Liu YY, He J, Li YD, Zhao XL, Zeng JB. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind Crop Prod. 2020;153:112576. https://doi.org/10.1016/j.indcrop.2020.112576.

    Article  CAS  Google Scholar 

  53. Li QT, Jiang MJ, Wu G, Chen L, Chen SC, Cao YX, Wang YZ. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes. ACS Appl Mater Interfaces. 2017;9(24):20797–807. https://doi.org/10.1021/acsami.7b01954.

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Yang X, Yu R, Zhao XJ, Zhang Y, Huang W. A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. J Mater Chem A. 2018;6(22):10184–8. https://doi.org/10.1039/c8ta02102c.

    Article  CAS  Google Scholar 

  55. Xu X, Ma S, Wang S, Wu J, Li Q, Lu N, Liu Y, Yang J, Feng J, Zhu J. Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. J Mater Chem A. 2020;8(22):11261–74. https://doi.org/10.1039/d0ta01419b.

    Article  CAS  Google Scholar 

  56. Wang S, Ma S, Li Q, Xu X, Wang B, Huang K, liu Y, Zhu J. Facile preparation of polyimine vitrimers with enhanced creep resistance and thermal and mechanical properties via metal coordination. Macromolecules. 2020;53(8):2919–31. https://doi.org/10.1021/acs.macromol.0c00036.

    Article  CAS  Google Scholar 

  57. Liu WX, Zhang C, Zhang H, Zhao N, Yu ZX, Xu J. Oxime-based and catalyst-free dynamic covalent polyurethanes. J Am Chem Soc. 2017;139(25):8678–84. https://doi.org/10.1021/jacs.7b03967.

    Article  CAS  PubMed  Google Scholar 

  58. Denissen W, Droesbeke M, Nicolaÿ R, Leibler L, Winne JM, Du Prez FE. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat Commun. 2017;8(1):14857. https://doi.org/10.1038/ncomms14857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ying H, Zhang Y, Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat Commun. 2014;5:3218. https://doi.org/10.1038/ncomms4218.

    Article  CAS  PubMed  Google Scholar 

  60. Tang J, Wan L, Zhou Y, Pan H, Huang F. Strong and efficient self-healing adhesives based on dynamic quaternization cross-links. J Mater Chem A. 2017;5(40):21169–77. https://doi.org/10.1039/c7ta06650c.

    Article  CAS  Google Scholar 

  61. Christensen PR, Scheuermann AM, Loeffler KEH, BA. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat Chem. 2019;11(5):442–8. https://doi.org/10.1038/s41557-019-0249-2.

    Article  CAS  PubMed  Google Scholar 

  62. Lei H, Wang S, Liaw DJ, Cheng Y, Yang X, Tan J, Chen X, Gu J, Zhang Y. Tunable and processable shape-memory materials based on solvent-free, catalyst-free polycondensation between formaldehyde and diamine at room temperature. ACS Macro Lett. 2019;8(5):582–7. https://doi.org/10.1021/acsmacrolett.9b00199.

    Article  CAS  PubMed  Google Scholar 

  63. Memon H, Liu H, Rashid MA, Chen L, Jiang Q, Zhang L, Wei Y, Liu W, Qiu Y. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules. 2020;53(2):621–30. https://doi.org/10.1021/acs.macromol.9b02006.

    Article  CAS  Google Scholar 

  64. Zhao S, Abu-Omar MM. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules. 2018;51(23):9816–24. https://doi.org/10.1021/acs.macromol.8b01976.

    Article  CAS  Google Scholar 

  65. Xu X, Ma S, Wu J, Yang J, Wang B, Wang S, Li Q, Feng J, You S, Zhu J. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. J Mater Chem A. 2019;7(25):15420–31. https://doi.org/10.1039/c9ta05293c.

    Article  CAS  Google Scholar 

  66. Liu T, Zhang S, Hao C, Verdi C, Liu W, Liu H, Zhang J. Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromol Rapid Commun. 2019;40(7):e1800889. https://doi.org/10.1002/marc.201800889.

    Article  CAS  PubMed  Google Scholar 

  67. Xu Y, Dai S, Bi L, Jiang J, Zhang H, Chen Y. Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chem Eng J. 2022;429:132518. https://doi.org/10.1016/j.cej.2021.132518.

    Article  CAS  Google Scholar 

  68. Yu Z, Ma S, Tang Z, Liu Y, Xu X, Li Q, Zhang K, Wang B, Wang S, Zhu J. Amino acids as latent curing agents and their application in fully bio-based epoxy resins. Green Chem. 2021;23(17):6566–75. https://doi.org/10.1039/d1gc02126e.

    Article  CAS  Google Scholar 

  69. Takada Y, Shinbo K, Someya Y, Shibata M. Preparation and properties of bio-based epoxy montomorillonite nanocomposites derived from polyglycerol polyglycidyl ether and ε-polylysine. J Appl Polym Sci. 2009;113(1):479–84. https://doi.org/10.1002/app.30015.

    Article  CAS  Google Scholar 

  70. Mattar N, de Anda AR, Vahabi H, Renard E, Langlois V. Resorcinol-based epoxy resins hardened with limonene and eugenol derivatives: from the synthesis of renewable diamines to the mechanical properties of biobased thermosets. ACS Sustain Chem Eng. 2020;8(34):13064–75. https://doi.org/10.1021/acssuschemeng.0c04780.

    Article  CAS  Google Scholar 

  71. Harmsen PFH, Hackmann MM, Bos HL. Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin. 2014;8(3):306–24. https://doi.org/10.1002/bbb.1468.

    Article  CAS  Google Scholar 

  72. Mattar N, Hübner F, Demleitner M, Brückner A, Langlois V, Renard E, Ruckdäschel H, Rios de Anda A. Multiscale characterization of creep and fatigue crack propagation resistance of fully bio-based epoxy-aamine resins. ACS Appl Polym Mater. 2021;3(10):5134–44. https://doi.org/10.1021/acsapm.1c00894.

    Article  CAS  Google Scholar 

  73. Illy N, Benyahya S, Durand N, Auvergne R, Caillol S, David G, Boutevin B. The influence of formulation and processing parameters on the thermal properties of a chitosan-epoxy prepolymer system. Polym Int. 2014;63(3):420–6. https://doi.org/10.1002/pi.4516.

    Article  CAS  Google Scholar 

  74. Lu C, Liu Y, Wang C, Yong Q, Wang J, Chu F. An integrated strategy to fabricate bio-based dual-cure and toughened epoxy thermosets with photothermal conversion property. Chem Eng J. 2022;433:134582. https://doi.org/10.1016/j.cej.2022.134582.

    Article  CAS  Google Scholar 

  75. Liu Z, Zhu X, Tian Y, Zhou K, Cheng J, Zhang J. Bio-based recyclable form-stable phase change material based on thermally reversible Diels-Alder reaction for sustainable thermal energy storage. Chem Eng J. 2022;448:137749. https://doi.org/10.1016/j.cej.2022.137749.

    Article  CAS  Google Scholar 

  76. Wang YX, Ishida H. Cationic ring-opening polymerization of benzoxazines. Polymer. 1999;40(16):4563–70. https://doi.org/10.1016/S0032-3861(99)00074-9.

    Article  CAS  Google Scholar 

  77. Zhang K, Liu Y, Han M, Froimowicz P. Smart and sustainable design of latent catalyst-containing benzoxazine-bio-resins and application studies. Green Chem. 2020;22(4):1209–19. https://doi.org/10.1039/c9gc03504d.

    Article  CAS  Google Scholar 

  78. Wang C, Sun J, Liu X, Sudo A, Endo T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem. 2012;14(10):2799–806. https://doi.org/10.1039/c2gc35796h.

    Article  CAS  Google Scholar 

  79. Monisha M, Yadav N, Lochab B. Sustainable framework of chitosan-benzoxazine with mutual benefits: low curing temperature and improved thermal and mechanical properties. ACS Sustain Chem Eng. 2019;7(4):4473–85. https://doi.org/10.1021/acssuschemeng.8b06515.

    Article  CAS  Google Scholar 

  80. Amarnath N, Shukla S, Lochab B. Isomannide-derived chiral rigid fully biobased polybenzoxazines. ACS Sustain Chem Eng. 2019;7(22):18700–10. https://doi.org/10.1021/acssuschemeng.9b05305.

    Article  CAS  Google Scholar 

  81. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. Chavicol benzoxazine: ultrahigh Tg biobased thermoset with tunable extended network. Eur Polym J. 2016;81:337–46. https://doi.org/10.1016/j.eurpolymj.2016.06.018.

    Article  CAS  Google Scholar 

  82. Froimowicz P, C RA, Han L, Ishida H. Smart, sustainable, and ecofriendly chemical design of fully bio-based thermally stable thermosets based on benzoxazine chemistry. Chem Sus Chem. 2016;9(15):1921–8. https://doi.org/10.1002/cssc.201600577.

    Article  CAS  Google Scholar 

  83. Periyasamy T, Asrafali SP, Muthusamy S. New benzoxazines containing polyhedral oligomeric silsesquioxane from eugenol, guaiacol and vanillin. New J Chem. 2015;39(3):1691–702. https://doi.org/10.1039/c4nj02047b.

    Article  CAS  Google Scholar 

  84. Devaraju S, Krishnadevi K, Sriharshitha S, Alagar M. Design and development of environmentally friendly polybenzoxazine-silica hybrid from renewable bio-resource. J Polym Environ. 2018;27(1):141–7. https://doi.org/10.1007/s10924-018-1327-z.

    Article  CAS  Google Scholar 

  85. Sharma P, Dutta P, Nebhani L. Sustainable approach towards enhancing thermal stability of bio-based polybenzoxazines. Polymer. 2019;184:121905. https://doi.org/10.1016/j.polymer.2019.121905.

    Article  CAS  Google Scholar 

  86. Wang X, Niu H, Huang J, Song L, Hu Y. A desoxyanisoin-and furfurylamine-derived high-performance benzoxazine thermoset with high glass transition temperature and excellent anti-flammability. Polym Degrad Stab. 2021;189:109604. https://doi.org/10.1016/j.polymdegradstab.2021.109604.

    Article  CAS  Google Scholar 

  87. Lin CH, Lin HT, Sie JWH, Tu KY, AP. Facile, one-pot synthesis of aromatic diamine-based phosphinated benzoxazines and their flame-retardant thermosets. J Polym Sci A Polym Chem. 2010;48(20):4555–66. https://doi.org/10.1002/pola.24247.

    Article  CAS  Google Scholar 

  88. Gaan S, Liang S, Mispreuve H, Perler H, Naescher R, Neisius M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym Degrad Stab. 2015;113:180–8. https://doi.org/10.1016/j.polymdegradstab.2015.01.007.

    Article  CAS  Google Scholar 

  89. Lin CM, Chen CH, Lin CH, Juang TY. High-performance bio-based benzoxazines derived from phosphinated biphenols and furfurylamine. Eur Polym J. 2018;108:48–56. https://doi.org/10.1016/j.eurpolymj.2018.08.024.

    Article  CAS  Google Scholar 

  90. Haubold TS, Puchot L, Adjaoud A, Verge P, Koschek K. Bio-based bisbenzoxazines with flame retardant linker. Polymers. 2021;13:4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo W, Wang X, Gangireddy CSR, Wang J, Pan Y, **ng W, Song L, Hu Y. Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Compos Part A Appl Sci Manuf. 2019;116:13–23. https://doi.org/10.1016/j.compositesa.2018.10.010.

    Article  CAS  Google Scholar 

  92. Yan H, Zhan Z, Wang H, Cheng J, Fang Z. Synthesis, curing, and thermal stability of low-temperature-cured benzoxazine resins based on natural renewable resources. ACS Appl Polym Mater. 2021;3(7):3392–401. https://doi.org/10.1021/acsapm.1c00361.

    Article  CAS  Google Scholar 

  93. Yebra DM, Kiil S, Dam-Johansen K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 2004;50(2):75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001.

    Article  CAS  Google Scholar 

  94. Chen J, Jian R, Yang K, Bai W, Huang C, Lin Y, Zheng B, Wei F, Lin Q, Xu Y. Urushiol-based benzoxazine copper polymer with low surface energy, strong substrate adhesion and antibacterial for marine antifouling application. J Clean Prod. 2021;318:128527. https://doi.org/10.1016/j.jclepro.2021.128527.

    Article  CAS  Google Scholar 

  95. Periyasamy T, Asrafali S, Shanmugam M, Kim SC. Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. Int J Biol Macromol. 2021;170:664–73. https://doi.org/10.1016/j.ijbiomac.2020.12.087.

    Article  CAS  PubMed  Google Scholar 

  96. Yadav N, Monisha M, Niranjan R, Dubey A, Patil S, Priyadarshini R, Lochab B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: elaboration and properties of released material. Carbohydr Polym. 2021;254:117296. https://doi.org/10.1016/j.carbpol.2020.117296.

    Article  CAS  PubMed  Google Scholar 

  97. Lu G, Dai J, Liu J, Tian S, Xu Y, Teng N, Liu X. A new sight into bio-based polybenzoxazine: from tunable thermal and mechanical properties to excellent marine antifouling performance. ACS Omega. 2020;5(7):3763–73. https://doi.org/10.1021/acsomega.0c00025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sha X-L, Yuan L, Liang G, Gu A. Preparation of high performance bio-based benzoxazine resin through a green solvent-free strategy for shape memory application. Polymer. 2020;202:122673. https://doi.org/10.1016/j.polymer.2020.122673.

    Article  CAS  Google Scholar 

  99. Sriharshitha S, Krishnadevi K, Devaraju S, Srinivasadesikan V, Lee SL. Eco-friendly sustainable poly(benzoxazine-co-urethane) with room-temperature-assisted self-healing based on supramolecular interactions. ACS Omega. 2020;5(51):33178–85. https://doi.org/10.1021/acsomega.0c04840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wuliu Y, Liu J, Zhang L, Wang S, Liu Y, Feng J, Liu X. Design of bio-based organic phase change materials containing a “safety valve”. Green Chem. 2021;23(21):8643–56. https://doi.org/10.1039/d1gc02618f.

    Article  CAS  Google Scholar 

  101. Yao H, Lu X, **n Z, Zhang H, Li X. A durable bio-based polybenzoxazine/SiO2 modified fabric with superhydrophobicity and superoleophilicity for oil/water separation. Sep Purif Technol. 2019;229:115792. https://doi.org/10.1016/j.seppur.2019.115792.

    Article  CAS  Google Scholar 

  102. Weng Z, Song L, Qi Y, Li J, Cao Q, Liu C, Zhang S, Wang J, Jian X. Natural magnolol derivatives as platform chemicals for bio-based phthalonitrile thermoset: achieving high performances without an external curing agent. Polymer. 2021;226:123814. https://doi.org/10.1016/j.polymer.2021.123814.

    Article  CAS  Google Scholar 

  103. Keller TM, Dominguez DD. High temperature resorcinol-based phthalonitrile polymer. Polymer. 2005;46(13):4614–8. https://doi.org/10.1016/j.polymer.2005.03.068.

    Article  CAS  Google Scholar 

  104. Laskoski M, Clarke JS, Neal A, Harvey BG, Ricks-Laskoski HL, Hervey WJ, Daftary MN, Shepherd AR, Keller TM. Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemistrySelect. 2016;1(13):3423–7. https://doi.org/10.1002/slct.201600304.

    Article  CAS  Google Scholar 

  105. Han Y, Tang DH, Wang GX, Sun YN, Guo Y, Zhou H, Qiu WF, Zhao T. Phthalonitrile resins derived from vanillin: synthesis, curing behavior, and thermal properties. Chinese J Polym Sci. 2019;38(1):72–83. https://doi.org/10.1007/s10118-019-2311-3.

    Article  CAS  Google Scholar 

  106. Wang C, Shi M, Fang L, Dai M, Huang G, Sun J, Fang Q. The bio-based phthalocyanine resins with high Tg and high char yield derived from vanillin. Polymer. 2021;224:123723. https://doi.org/10.1016/j.polymer.2021.123723.

    Article  CAS  Google Scholar 

  107. Liu Y, Liu Z-z, Peng W-f, Lu Z, Hu J-h, Zeng K, Yang G. Inspiration from a new lignin-derived phthalonitrile resin: unique curing behavior, and thermal properties. Eur Polym J. 2019;121:109351. https://doi.org/10.1016/j.eurpolymj.2019.109351.

    Article  CAS  Google Scholar 

  108. Peng W, Yao F, Hu J, Liu Y, Lu Z, Liu Y, Liu Z, Zeng K, Yang G. Renewable protein-based monomer for thermosets: a case study on phthalonitrile resin. Green Chem. 2018;20(22):5158–68. https://doi.org/10.1039/c8gc01824c.

    Article  CAS  Google Scholar 

  109. Chen M, He X, Guo Y, Hu J, Liang B, Zeng K, Yang G. A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin. Polym Chem. 2021;12(3):408–22. https://doi.org/10.1039/d0py01322f.

    Article  CAS  Google Scholar 

  110. Qi Y, Weng Z, Wang J, Zhang S, Zong L, Liu C, Jian X. A novel bio-based phthalonitrile resin derived from catechin: synthesis and comparison of curing behavior with petroleum-based counterpart. Polym Int. 2018;67(3):322–9. https://doi.org/10.1002/pi.5507.

    Article  CAS  Google Scholar 

  111. Zhang C, Garrison TF, Madbouly SA, Kessler MR. Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci. 2017;71:91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009.

    Article  CAS  Google Scholar 

  112. **e F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci. 2019;90:211–68. https://doi.org/10.1016/j.progpolymsci.2018.12.003.

    Article  CAS  Google Scholar 

  113. Gogoi S, Karak N. Bio-based high-performance waterborne hyperbranched polyurethane thermoset. Polym Adv Technol. 2015;26(6):589–96. https://doi.org/10.1002/pat.3490.

    Article  CAS  Google Scholar 

  114. Kang SY, Ji Z, Tseng LF, Turner SA, Villanueva DA, Johnson R, Albano A, Langer R. Design and synthesis of waterborne polyurethanes. Adv Mater. 2018;30(18):e1706237. https://doi.org/10.1002/adma.201706237.

    Article  CAS  PubMed  Google Scholar 

  115. Liu L, Lu J, Zhang Y, Liang H, Liang D, Jiang J, Lu Q, Quirino RL, Zhang C. Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties. Green Chem. 2019;21(3):526–37. https://doi.org/10.1039/c8gc03560a.

    Article  CAS  Google Scholar 

  116. Karami Z, Kabiri K, Zohuriaan-Mehr MJ. Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: a preliminary study on thermo-mechanical and antibacterial properties. J CO2 Util. 2019;34:558–67. https://doi.org/10.1016/j.jcou.2019.08.009.

    Article  CAS  Google Scholar 

  117. Hibert G, Lamarzelle O, Maisonneuve L, Grau E, Cramail H. Bio-based aliphatic primary amines from alcohols through the ‘nitrile route’ towards non-isocyanate polyurethanes. Eur Polym J. 2016;82:114–21. https://doi.org/10.1016/j.eurpolymj.2016.07.007.

    Article  CAS  Google Scholar 

  118. Wunschik DS, Ingenbosch KN, Zähres M, Horst J, Mayer C, Jäger M, Strehmel V, Dornbusch M, Hoffmann-Jacobsen K. Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate. Green Chem. 2018;20(20):4738–45. https://doi.org/10.1039/c8gc02267d.

    Article  CAS  Google Scholar 

  119. Ramdani N, Zaimeche H, Derradji M. Biobased thermally-stable aromatic cyanate ester thermosets: a review. React Funct Polym. 2021;168:105037. https://doi.org/10.1016/j.reactfunctpolym.2021.105037.

    Article  CAS  Google Scholar 

  120. Barde M, Edmunds CW, Labbé N, Auad ML. Fast pyrolysis bio-oil from lignocellulosic biomass for the development of bio-based cyanate esters and cross-linked networks. High Perform Polym. 2019;31(9–10):1140–52. https://doi.org/10.1177/0954008319829517.

    Article  CAS  Google Scholar 

  121. Koelewijn SF, Van den Bosch S, Renders T, Schutyser W, Lagrain B, Smet M, Thomas J, Dehaen W, Van Puyvelde P, Witters H, Sels BF. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 2017;19(11):2561–70. https://doi.org/10.1039/c7gc00776k.

    Article  CAS  Google Scholar 

  122. Harvey BG, Guenthner AJ, Meylemans HA, Haines SRL, Lamison KR, Groshens TJ, Cambrea LR, Davis MC, Lai WW. Renewable thermosetting resins and thermoplastics from vanillin. Green Chem. 2015;17(2):1249–58. https://doi.org/10.1039/c4gc01825g.

    Article  CAS  Google Scholar 

  123. Meylemans HA, Harvey BG, Reams JT, Guenthner AJ, Cambrea LR, Groshens TJ, Baldwin LC, Garrison MD, Mabry JM. Synthesis, characterization, and cure chemistry of renewable bis(cyanate) esters derived from 2-methoxy-4-methylphenol. Biomacromolecules. 2013;14(3):771–80. https://doi.org/10.1021/bm3018438.

    Article  CAS  PubMed  Google Scholar 

  124. Cash JJ, Davis MC, Ford MD, Groshens TJ, Guenthner AJ, Harvey BG, Lamison KR, Mabry JM, Meylemans HA, Reams JT, Sahagun CM. High Tg thermosetting resins from resveratrol. Polym Chem. 2013;4(13):3859–65. https://doi.org/10.1039/c3py00438d.

    Article  CAS  Google Scholar 

  125. Cambrea LR, Davis MC, Garrison MD, Groshens TJ, Lyon RE, Safronava N. Processable cyanate ester resin from Cisresveratrol. J Polym Sci A Polym Chem. 2017;55(6):971–80. https://doi.org/10.1002/pola.28457.

    Article  CAS  Google Scholar 

  126. Garrison MD, Harvey BG. Structure-property relationships of cis-resveratrol cyanate ester blends. Polymer. 2021;213:123194. https://doi.org/10.1016/j.polymer.2020.123194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 51873027, 52073038), the Fundamental Research Funds for the Central Universities (DUT20TD114, DUT22LAB605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihuan Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Cao, Q., Weng, Z. (2023). Producing N-Containing Chemicals from Biomass for High Performance Thermosets. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of N-containing Chemicals and Materials from Biomass. Biofuels and Biorefineries, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-99-4580-1_9

Download citation

Publish with us

Policies and ethics

Navigation