A Semi-analytical Approach to Approximate Chattering Time of Rocking Structures

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage (MACH 2021)

Abstract

This paper investigates the seismic behaviour of a freestanding rigid rocking block when subjected to low amplitude sinusoidal ground excitations. An important scenario in such cases is the complete chattering the block might exhibit. Complete chattering occurs when the block undergoes a theoretically infinite sequence of decaying impacts that converge to the state of persistent (continuous) contact in finite time, even under a nonzero ground excitation. This study proposes a semi-analytical approach that approximates the (finite) time required for this to happen, i.e. chattering time. Specifically, this paper provides a detailed description of the semi-analytical scheme and shows the influence of the amplitude of the ground acceleration on the approximation of the chattering time. Importantly, the proposed scheme is based on the realisation that, during chattering, and after a sufficiently large number of impacts, the ratio of the time-intervals of every two consecutive impacts becomes constant and equal to the square of the coefficient of restitution. The proposed semi-analytical approach efficiently approximates chattering time providing a state-of-the-art mathematical formulation of the chattering phenomenon for the rocking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konstantinidis, D., Makris, N.: Experimental and analytical studies on the response of 1/4-scale models of freestanding laboratory equipment subjected to strong earthquake shaking. Bull. Earthq. Eng. 8(6), 1457–1477 (2010)

    Article  Google Scholar 

  2. Fragiadakis, M., Diamantopoulos, S.: Fragility and risk assessment of freestanding building contents. Earthq. Eng. Struct. Dyn. 49(10), 1028–1048 (2020)

    Article  Google Scholar 

  3. Kazantzi, A.K., Lachanas, C.G., Vamvatsikos, D.: Seismic response distribution expressions for on-ground rigid rocking blocks under ordinary ground motions. Earthq. Eng. Struct. Dyn. 50(12), 3311–3331 (2021)

    Article  Google Scholar 

  4. Funari, M.F., Mehrotra, A., Lourenço, P.B.: A tool for the rapid seismic assessment of historic masonry structures based on limit analysis optimisation and rocking dynamics. Appl. Sci. 11(3), 942 (2021)

    Article  Google Scholar 

  5. Vlachakis, G., Giouvanidis, A.I., Mehrotra, A., Lourenço, P.B.: Numerical block-based simulation of rocking structures using a novel universal viscous dam** model. J. Eng. Mech. 147(11), 04021089 (2021)

    Article  Google Scholar 

  6. Vlachakis, G., Colombo, C., Giouvanidis, A.I., Savalle, N., Lourenço, P.B.: Experimental characterisation of dry-joint masonry structures: interface stiffness and interface dam**. Constr. Build. Mater. 392, 130880 (2023)

    Article  Google Scholar 

  7. Dimitrakopoulos, E.G., Giouvanidis, A.I.: Seismic response analysis of the planar rocking frame. J. Eng. Mech. 141(7), 04015003 (2015)

    Article  Google Scholar 

  8. Agalianos, A., Psychari, A., Vassiliou, M.F., Stojadinovic, B., Anastasopoulos, I.: Comparative assessment of two rocking isolation techniques for a motorway overpass bridge. Front. Built Environ. 3, 47 (2017)

    Article  Google Scholar 

  9. Giouvanidis, A.I., Dimitrakopoulos, E.G.: Seismic performance of rocking frames with flag-shaped hysteretic behavior. J. Eng. Mech. 143(5), 04017008 (2017)

    Article  Google Scholar 

  10. Vassiliou, M.F.: Seismic response of a wobbling 3d frame. Earthq. Eng. Struct. Dyn. 47(5), 1212–1228 (2017)

    Article  Google Scholar 

  11. Thomaidis, I.M., Kappos, A.J., Camara, A.: Dynamics and seismic performance of rocking bridges accounting for the abutment-backfill contribution. Earthq. Eng. Struct. Dyn. 49(12), 1161–1179 (2020)

    Article  Google Scholar 

  12. Giouvanidis, A.I., Dong, Y.: Seismic loss and resilience assessment of single-column rocking bridges. Bull. Earthq. Eng. 18(9), 4481–4513 (2020)

    Article  Google Scholar 

  13. Lenci, S., Rega, G.: A dynamical systems approach to the overturning of rocking blocks. Chaos Solitons Fractals 28(2), 527–542 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimitrakopoulos, E.G., DeJong, M.J.: Revisiting the rocking block: closed-form solutions and similarity laws. Proc. R. Soc. A Math. Phys. Eng. Sci. 468(2144), 2294–2318 (2012)

    Google Scholar 

  15. Dimitrakopoulos, E.G., DeJong, M.J.: Overturning of retrofitted rocking structures under pulse-type excitations. J. Eng. Mech. 138(8), 963–972 (2012)

    Article  Google Scholar 

  16. Voyagaki, E., Psycharis, I.N., Mylonakis, G.: Complex response of a rocking block to a full-cycle pulse. J. Eng. Mech. 140(6), 04014024 (2013)

    Article  Google Scholar 

  17. Dimitrakopoulos, E.G., Paraskeva, T.S.: Dimensionless fragility curves for rocking response to near-fault excitations. Earthq. Eng. Struct. Dyn. 44(12), 2015–2033 (2015)

    Article  Google Scholar 

  18. Reggiani Manzo, N., Vassiliou, M.F.: Displacement-based analysis and design of rocking structures. Earthq. Eng. Struct. Dyn. 48(14), 1613–1629 (2019)

    Article  Google Scholar 

  19. Reggiani Manzo, N., Vassiliou, M.F.: Cyclic tests of a precast restrained rocking system for sustainable and resilient seismic design of bridges. Eng. Struct. 252, 113620 (2022)

    Article  Google Scholar 

  20. Katsamakas, A.A., Vassiliou, M.F.: Finite element modeling of free-standing cylindrical columns under seismic excitation. Earthq. Eng. Struct. Dyn. 51(9), 2016–2035 (2022)

    Article  Google Scholar 

  21. Budd, C., Dux, F.: Chattering and related behaviour in impact oscillators. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 347(1683), 365–389 (1994)

    MATH  Google Scholar 

  22. Nordmark, A.B., Piiroinen, P.T.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58(1), 85–106 (2009)

    Article  MATH  Google Scholar 

  23. Acary, V.: Projected event-capturing time-step** schemes for nonsmooth mechanical systems with unilateral contact and coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luck, J.M., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48(5), 3988 (1993)

    Article  MathSciNet  Google Scholar 

  25. Demeio, L., Lenci, S.: Dynamic analysis of a ball bouncing on a flexible beam. J. Sound Vibration 441, 152–164 (2019)

    Article  Google Scholar 

  26. Schindler, K., Leine, R.I.: Paradoxical simulation results of chaos-like chattering in the bouncing ball system. Physica D Nonlinear Phenom. 419, 132854 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hatchell, P.J.: Investigating \(t_{\infty }\) for bouncing balls. Am. J. Phys. 89(2), 147–156 (2021)

    Google Scholar 

  28. Goyal, S., Papadopoulos, J., Sullivan, P.: The dynamics of clattering I: equation of motion and examples. J. Dyn. Syst. Meas. Control 120(1), 83–93 (1998)

    Article  Google Scholar 

  29. Goyal, S., Papadopoulos, J., Sullivan, P.: The dynamics of clattering II: Global results and shock protection. J. Dyn. Syst. Meas. Control 120(1), 94–102 (1998)

    Article  Google Scholar 

  30. Le Saux, C., Leine, R.I., Glocker, C.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15(1), 27–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Demeio, L., Lenci, S.: Asymptotic analysis of chattering oscillations for an impacting inverted pendulum. Q. J. Mech. Appl. Math. 59(3), 419–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lenci, S., Demeio, L., Petrini, M.: Response scenario and nonsmooth features in the nonlinear dynamics of an impacting inverted pendulum. J. Comput. Nonlinear Dyn. 1(1), 56–64 (2006)

    Article  Google Scholar 

  33. Leine, R.I., Heimsch, T.: Global uniform symptotic attractive stability of the non-autonomous bouncing ball system. Physica D Nonlinear Phenom. 241(22), 2029–2041 (2012)

    Article  MathSciNet  Google Scholar 

  34. Or, Y., Ames, A.D.: Stability and completion of Zeno equilibria in Lagrangian hybrid systems. IEEE Trans. Autom. Control 56(6), 1322–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ames, A.D., Zheng, H., Gregg, R.D., Sastry, S.: Is there life after Zeno? Taking executions past the breaking (Zeno) point. In: 2006 American Control Conference, IEEE (2006)

    Google Scholar 

  36. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, ICMS, vol. 302, pp. 1–82. Springer, Wien (1988)

    Chapter  Google Scholar 

  37. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chatterjee, A., Rodriguez, A., Bowling, A.: Analytic solution for planar indeterminate impact problems using an energy constraint. Multibody Syst. Dyn. 42(3), 347–379 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cosimo, A., Cavalieri, F.J., Cardona, A., Brüls, O.: On the adaptation of local impact laws for multiple impact problems. Nonlinear Dyn. 102(4), 1997–2016 (2020)

    Article  Google Scholar 

  40. Giouvanidis, A.I., Dimitrakopoulos, E.G.: Rocking amplification and strong-motion duration. Earthq. Eng. Struct. Dyn. 47(10), 2094–2116 (2018)

    Article  Google Scholar 

  41. Cusumano, J., Bai, B.Y.: Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator. Chaos Solitons Fractals 3(5), 515–535 (1993)

    Article  MATH  Google Scholar 

  42. Wagg, D.J., Bishop, S.: Chatter, sticking and chaotic impacting motion in a two-degree of freedom impact oscillator. Int. J. Bifurc. Chaos 11(01), 57–71 (2001)

    Article  Google Scholar 

  43. Baranyai, T., Várkonyi, P.L.: Zeno chattering of rigid bodies with multiple point contacts. Nonlinear Dyn. 92(4), 1857–1879 (2018)

    Article  MATH  Google Scholar 

  44. Lyapunov, A.M.: Stability of Motion. Academic Press, London (1966)

    MATH  Google Scholar 

  45. Giouvanidis, A.I., Dimitrakopoulos, E.G., Lourenço, P.B.: Chattering: an overlooked peculiarity of rocking motion. Nonlinear Dyn. 109, 459–477 (2022)

    Article  Google Scholar 

  46. Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27(3), 351–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. DeJong, M.J., Dimitrakopoulos, E.G.: Dynamically equivalent rocking structures. Earthq. Eng. Struct. Dyn. 43(10), 1543–1563 (2014)

    Article  Google Scholar 

  48. Giouvanidis, A.I., Dimitrakopoulos, E.G.: Nonsmooth dynamic analysis of sticking impacts in rocking structures. Bull. Earthq. Eng. 15(5), 2273–2304 (2017)

    Article  Google Scholar 

  49. Dimitrakopoulos, E.G., Fung, E.D.W.: Closed-form rocking overturning conditions for a family of pulse ground motions. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2196), 20160662 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Natsiavas, S., Passas, P., Paraskevopoulos, E.: A time-step** method for multibody systems with frictional impacts based on a return map and boundary layer theory. Int. J. Non-Linear Mech. 131, 103683 (2021)

    Article  Google Scholar 

  51. Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963)

    Article  Google Scholar 

  52. Aslam, M., Scalise, D.T., Godden, W.G.: Earthquake rocking response of rigid bodies. J. Struct. Div. 106(2), 377–392 (1980)

    Article  Google Scholar 

  53. ElGawady, M.A., Sha’lan, A.: Seismic behavior of self-centering precast segmental bridge bents. J. Bridge Eng. 16(3), 328–339 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios I. Giouvanidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giouvanidis, A.I., Dimitrakopoulos, E.G., Lourenço, P.B. (2023). A Semi-analytical Approach to Approximate Chattering Time of Rocking Structures. In: Bretti, G., Cavaterra, C., Solci, M., Spagnuolo, M. (eds) Mathematical Modeling in Cultural Heritage. MACH 2021. Springer INdAM Series, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-99-3679-3_8

Download citation

Publish with us

Policies and ethics

Navigation