Nitrogen Cycling in the Course of Biological Treatment of Wastewater in wetlands—An Analysis

  • Chapter
  • First Online:
Anammox Technology in Industrial Wastewater Treatment

Abstract

Nitrogen is abundant in the atmosphere (almost 80%) and remains in highly stable and non-reactive forms, yet it is the sole source in the ecosystem. The reactive forms like ammonium, nitrite and nitrate act as nutrients and are, thus, very essential for plant growth, but their content is limited in the soil system. Hence, aerial nitrogen is utilized in the form of fertilizer for food production and supply as protein through the food web to various trophic levels. After the death of organisms, consortiums of microorganisms take the responsibility to return back the bound nitrogen to the atmosphere following some sequences of reactions. Hence, nitrogen cycling is important for maintaining nitrogen balance in the ecosystem. Nitrogen, especially the domestic wastewater is mostly found in organic form with negligible number of oxidative forms. The conventional wastewater treatment does not involve any separate nitrogen removal process. It is only removed by natural biological treatment process including steps of ammonification, nitrification, eutrophication and denitrification. Together with this, some bio-induced physical processes like sedimentation, volatilization, de ammonification (anammox) and sequestration might play a significant role in nitrogen balancing in the atmosphere. However, during the process of biological removal of nitrogen from wastewater it might release some amount of nitrous oxide gas, increasing the greenhouse gas footprint. Hence, it is urgently necessary to highlight the more sustainable pathways for nitrogen recovery and reusing in the course of conventional as well as natural wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. B. (2003). Ecological issues related to N deposition to natural ecosystems: Research needs. Environment International, 29, 89–199.

    Article  Google Scholar 

  • Anderson, N., Strader, R., & Davidson, C. (2003). Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environment International, 29, 277–286.

    Article  CAS  Google Scholar 

  • Angell A. R., Mata L., de Nys, R. et al (2016). The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, (28), 511–524.

    Google Scholar 

  • Annavajhala, M. K., Kapoor, V., Santo-Domingo, J., & Chandran, K. (2018). Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environmental Science and Technology Letters, 5(2), 110–116.

    Article  CAS  Google Scholar 

  • Bardgett, R., Wardle, D. A., & Yeates, G. (1998). Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867–1878.

    Article  CAS  Google Scholar 

  • Bateman, E. J., & Baggs, E. M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils, 41, 379–388.

    Article  CAS  Google Scholar 

  • Beeckman, F., Motte, H., & Beeckman, T. (2018). Nitrification in agricultural soils: Impact, actors and mitigation. Current Opinion in Biotechnology, 50, 166–173.

    Article  CAS  Google Scholar 

  • Chen, H., **, W., Liang, Z., Abomohra, A. E. F., Zhou, X., Tu, R., & Han, S. (2017). Abundance and diversity of ammonia-oxidizing archaea in a biological aerated filter process. Annals of Microbiology, 67(6), 405–416.

    Article  CAS  Google Scholar 

  • Das Gupta, A., Sarkar, S., Singh, J., Saha, T., & Sil, K. A. (2016). Nitrogen dynamics of the aquatic system is an important driving force for efficient sewage purification in single pond natural treatment wetlands at East Kolkata Wetland. Chemosphere 164, 576–584.

    Google Scholar 

  • DeBusk, W. F. (2003). Nitrogen cycling in wetlands (pp. 1–3). University of Florida IFAS Ext (SL171).

    Google Scholar 

  • Denancé, N., Szurek, B., & Noël, L. D. (2014). Emerging functions of nodulin-like proteins in non-modulating plant species. Plant and Cell Physics, 3, 469–474.

    Article  Google Scholar 

  • Fink, P., Pflitsch, C., & Marin, K. (2011). Dietary essential amino acids affect the reproduction of the keystone Herbivore Daphnia pulex. PLoS ONE, 6(12), 1–28498.

    Article  Google Scholar 

  • Galloway, N. J., Aber, D. J., Erisman, J. W., Seitzinger, P. S., Howarth, W. R., Cowling, E. B., & Cosby, J. B. (2003). The Nit Cscd. BioScience, 53, 341–356.

    Article  Google Scholar 

  • Gangagni Rao, A., SasiKanth Reddy, T., Surya Prakash, S., Vanajakshi, J., Joseph, J., Sarma, P. N. (2007). pH regulation of alkaline wastewater with carbon dioxide: A case study of treatment of brewery wastewater in UASB reactor coupled with absorber. Bioresource Technology (98), 2131–2136.

    Google Scholar 

  • Gao, J., Luo, X., Wu, G., Li, T., & Peng, Y. (2014). Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Applied Microbiology and Biotechnology, 98(7), 3339–3354.

    Article  CAS  Google Scholar 

  • Gwak, J. H., Jung, M. Y., Hong, H., Kim, J. G., Quan, Z. X., Reinfelder, J. R., Spasov, E., Neufeld, J. D., Wagner, M., & Rhee, S. K. (2020). Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. The ISME Journal, 14(2), 335–346.

    Article  CAS  Google Scholar 

  • Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R., & Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: The next stage. Chemical Reviews, 8, 4041–4062.

    Article  Google Scholar 

  • Hoffman, J. R., & Falvo, M. J. (2004). Protein–which is best? Journal of Science and Medicine in Sport, (3), 118.

    Google Scholar 

  • Hoghooghi, N., Pippin, J. S., Meyer, B. K., Hodges, J. B., & Bledsoe, B. P. (2021). Frontiers in assessing septic systems vulnerability in coastal Georgia, USA: Mod app and mngmt impl. PloS one, (8), e0256606.

    Google Scholar 

  • Kampman, C., Temmink, H., Hendrickx, T. L. G., Zeeman, G., & Buisman, C. J. N. (2014). Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 °C. Journal of Hazardous Materials, 274, 428–435.

    Article  CAS  Google Scholar 

  • Kraft, B., Tegetmeyer, H. E., Sharma, R., Klotz, M. G., Ferdelman, T. G., Hettich, R. L., Geelhoed, J. S., & Strous, M. (2014). The environmental controls that govern the end product of bacterial nitrate respiration. Science, 345(6197), 676–679.

    Article  CAS  Google Scholar 

  • Landner, L. (2013). Sources of nitrogen as a water pollutant: industrial wastewater. Proc of the Conf on Nit As a Wat Pt: 55–65

    Google Scholar 

  • Lee, C.-G., Fletcher, T., & Sun, G. (2009). Nitrogen removal in constructed wetland systems. Engineering in Life Sciences (9), 11–22.

    Google Scholar 

  • Lei, M., Kai, W., Shuying, W., Rulong, Z., Baikun, L., Yongzhen, P., & Dongchen, W. (2014). Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresource Technology, 159, 258–326.

    Article  Google Scholar 

  • Lei, M., Gangqing, Y., Tao, T., & Yongzhen, P. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments–A review. Journal of Environmental Management, 235, 178–185.

    Google Scholar 

  • Lie, Z., Huang, W., Liu, X., Zhou, G., Yan, J., Li, Y., Huang, C., Wu, T., Fang, X., Zhao, M., Liu, S., Chu, G., Kadowaki, K., Pan, X., & Liu, J. (2021). Warming leads to more closed nitrogen cycling in nitrogen-rich tropical forests. Global Change Biology, 27(3), 664–674.

    Article  Google Scholar 

  • Liu, X. Y., Koba, K., Makabe, A., & Liu, C. Q. (2014). Nitrate dynamics in natural plants: Insights based on the concentration and natural isotope abundances of tissue nitrate. Front in Plant Science, 5, 355.

    Article  Google Scholar 

  • Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—beyond 6.25 and Jones’ Factors. Critical Reviews in Food Science and Nutrition, (48), 2, 177–184.

    Google Scholar 

  • Poh, P. E., Gouwanda, D., Mohan, Y., Gopalai, A. A., & Tan, H. M. (2016). Optimization of wastewater anaerobic digestion using mechanistic and meta-heuristic methods: current limitations and future opportunities. Water Conservation Science and Engineering, 1, 1–20.

    Article  Google Scholar 

  • Rajta, A., Bhatia, R., Setia, H., & Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology, 128, 1261–1278.

    Article  CAS  Google Scholar 

  • Roy, A. H. (2007). Fertilizers and food production. In J. A. Kent (Ed.), Kent and Riegel’s handbook of industrial chemistry and biotechnology (pp. 1111–1156). Springer.

    Chapter  Google Scholar 

  • Roy, A., Aftabuddin M. K. M. S. (2018). Conflict around wetland use in West Bengal. Ind wat port: 1–1

    Google Scholar 

  • Shapley, P. (2009). Wetlands and chemistry, US EPA (p. 1)

    Google Scholar 

  • Sliekers, A. O., Derwort, N., Campos Gomez, J. L., Strous, M., Kuenen, J. G., & Jetten, M. S. M. (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 36, 2475–2482.

    Article  CAS  Google Scholar 

  • Sponseller, R. A., Gundale, M. J., Futter, M., et al. (2016). Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio, 45, 175–187.

    Article  CAS  Google Scholar 

  • Tang, C.-J., Zheng, P., Chen, T.-T., Zhang, J.-Q., Mahmood, Q., Ding, S., Chen, X.-G., Chen, J.-W., & Wu, D.-T. (2011). Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process. Water Research (45), 201–210.

    Google Scholar 

  • United States Environmental Protection (2021), The Sources and Solutions: Wastewater, Nutrient Pollution, US Env ProtAgcy: 1–1

    Google Scholar 

  • van Puijenbroek, P. J. T. M., Beusen, A. H. W., & Bouwman, A. F. (2019). Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. Journal of Environmental Management, 231, 446–456.

    Article  Google Scholar 

  • Ward, B. B. (2003). Significance of anaerobic ammonium oxidation in the ocean. Trends in Microbiology, 11, 408–410.

    Article  CAS  Google Scholar 

  • Washington State Department of Health. (2014). How Nitrogen from Septic Systems Can Harm Water Quality, WS DOH: 1–2

    Google Scholar 

  • Watford, M., & Wu, G. (2018). Protein. Advances in Nutrition, (5), 651–653.

    Google Scholar 

  • Wiesmann, U. (1994). Biological nitrogen removal from wastewater. In U. Wiesmann (Ed.), Biotechnics/Wastewater (pp. 113–154). Springer.

    Chapter  Google Scholar 

  • Wolf, K. L., Ahn, C., & Noe, G. B. (2011). Development of soil properties and nitrogen cyclingin created wetlands. Wetlands (31), 699–712.

    Google Scholar 

  • Wong, C., Barton, G., & Barfor, J. (2003). The nitrogen cycle and its application in wastewater treatment. Hndbk Wat and Wstwatr Microbiol 427–439.

    Google Scholar 

  • Yin, Z., **e, L., & Zhou, Q. (2015). Effects of sulfide on the integration of denitrification with anaerobic digestion. Journal of Bioscience and Bioengineering, 120(4), 426–431.

    Article  CAS  Google Scholar 

  • Zhou, N. Q., Yang, W. J., & Wang, Y. (2010a). Nitrogen cycle characteristics in wetlands and its influence to natural environment. International Conference on Automobile and Mechanical Engineering, 2105–2108.

    Google Scholar 

  • Zhou, N. Q., Yang, W. J., & Wang, Y. (2010b). Nitrogen cycle characteristics in wetlands and its influence to natural environment. International Conference on Automobile and Mechanical Engineering, 2105–2108.

    Google Scholar 

  • Zhou, N., Yang, W., & Wang, Y. (2010c). Nitrogen cycle characteristics in wetlands and its influence to natural environment. MACE 2010c

    Google Scholar 

  • Zhou, N. Q., Yang, W. J., & Wang, Y. (2012). Nitrogen cycle characteristics in wetland and its influence to natural environment. In IEEE 2010 International Conference on Mechanic Automation and Control Engineering (MACE). Wuhan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S., Mazumder, C., Biswas, A., Roy, A., Mukherjee, S. (2023). Nitrogen Cycling in the Course of Biological Treatment of Wastewater in wetlands—An Analysis. In: Shah, M.P. (eds) Anammox Technology in Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-3459-1_8

Download citation

Publish with us

Policies and ethics

Navigation