The Structure of Rice Starch and its Application

  • Chapter
  • First Online:
Science of Rice Chemistry and Nutrition
  • 213 Accesses

Abstract

Multiple scales of starch structure are introduced from micro to macro in detail. First, the fine molecular structures of rice starch are illustrated including the wholebranched rice starch molecular structure and debranched rice starch molecular structure. And then the rice starch structure at 2–100 mm scale as well as the growth rings, blocklets, and amorphous and crystalline lamellae are described. After that, the physicochemical properties of rice starch with different amylose contents, such as gelatinization, retrogradation, swelling and pasting properties, and digestion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAC:

Apparent amylose content

BD:

Breakdown

CLD:

Chain-length distributions

CPV:

Cold paste viscosity

CS:

Consistency

DP:

Degree of polymerization

DRI:

Differential refractive index

DSC:

Differential scanning calorimetry

ECL:

External chain length

FACE:

Fluorophore-assisted carbohydrate electrophoresis

GPC:

Gel-permeation chromatography

GT:

Gelatinization temperature

HPACE:

High-performance anion exchange chromatography

HPV:

Hot paste viscosity

MALLS:

Multiple-angle laser scattering

NMR:

Nuclear magnetic resonance

PT:

Pasting temperature

PV:

Peak viscosity

Rh:

Hydrodynamic radius

RVA:

Rapid visco-analyzer

SB:

Setback

SEC:

Size-exclusion chromatography

TAC:

True amylose content

TV:

Trough viscosities

References

  • Ayoub A, Ohtani T, Sugiyama S (2006) Atomic force microscopy investigation of disorder process on rice starch granule surface. Starch - Stärke 58(9):475–479

    Article  CAS  Google Scholar 

  • Bao J (2019) 3 - Rice starch. In: Bao J (ed) Rice (fourth edition). AACC International Press, pp 55–108

    Google Scholar 

  • Bao J, Corke H, Sun M (2010) Genetic diversity in the physicochemical properties of waxy rice (Oryza sativa L) starch. J Sci Food Agric 84(11):1299–1306

    Article  Google Scholar 

  • Bao J, **ao P, Hiratsuka M, Sun M, Umemoto T (2009) Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch - Stärke 61(8):431–437

    Article  CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Article  PubMed  Google Scholar 

  • Cameron RE, Donald AM (1992) A small-angle X-ray scattering study of the annealing and gelatinisation of starch. Polymer 33(12):2628–2635

    Article  CAS  Google Scholar 

  • Castro JV, Ward RM, Gilbert RG, Fitzgerald MA (2005) Measurement of the molecular weight distribution of debranched starch. Biomacromolecules 6(4):2260–2270

    Article  CAS  PubMed  Google Scholar 

  • Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 10(8):2245–2253

    Article  CAS  PubMed  Google Scholar 

  • Chrungoo NK, Devi AG (2015) Morphological and rheological properties of starches separated from cultivars of rice (Oryza sativaL.) from North East India. Am J Plant Sci 6(12):2019–2031

    Article  CAS  Google Scholar 

  • Cuevas RP, Daygon VD, Corpuz HM, Nora L, Reinke RF, Waters D, Fitzgerald MA (2010) Melting the secrets of gelatinisation temperature in rice. Funct Plant Biol 37(5):439–447

    Article  CAS  Google Scholar 

  • Dang JMC, Copeland L (2003) Imaging rice grains using atomic force microscopy. J Cereal Sci 37(2):165–170

    Article  Google Scholar 

  • FAOSTAT (2018) Food and Agricultural Data. http://www.fao.org/faostat/en/

  • Fitzgerald MA, Bergman CJ, Resurreccion AP, Möller J, Jimenez R, Reinke RF, Martin M, Blanco P, Molina F, Chen M-H, Kuri V, Romero MV, Habibi F, Umemoto T, Jongdee S, Graterol E, Reddy KR, Bassinello PZ, Sivakami R, Rani NS, Das S, Wang YJ, Indrasari SD, Ramli A, Ahmad R, Dipti SS, **e L, Lang NT, Singh P, Toro DC, Tavasoli F, Mestres C (2009a) Addressing the dilemmas of measuring amylose in rice. Cereal Chem 86(5):492–498

    Article  CAS  Google Scholar 

  • Fitzgerald MA, Mccouch SR, Hall RD (2009b) Not just a grain of rice: the quest for quality. Trends Plant Sci 14(3):133–139

    Article  CAS  PubMed  Google Scholar 

  • Frei M, Siddhuraju P, Becker K (2003) Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from The Philippines. Food Chem 83(3):395–402

    Article  CAS  Google Scholar 

  • French D (1984) Starch: chemistry and technology. Food Sci Technol:183–247. https://doi.org/10.1016/B978-0-12-746270-7.50013-6

  • Gong B, Cheng L, Gilbert RG, Li C (2019) Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll 96:634–643

    Article  CAS  Google Scholar 

  • Hoogenkamp H, Kumagai H, Wanasundara JPD (2017) Chapter 3 - Rice protein and rice protein products. Sustainable Protein Sources:47–65. https://doi.org/10.1016/B978-0-12-802778-3.00003-2

  • Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43(2):399–413

    Article  CAS  Google Scholar 

  • Huang Z, Zeng Z, Gao Y, Liu C, Wu J, Hu X (2019) Crystallization of short-chain amylose: effect of the precipitant. Starch-Starke 71:1900007

    Article  Google Scholar 

  • Jenkins PJ, Cameron RE, Donald AM (1993) A universal feature in the structure of starch granules from different botanical sources. Starch - Stärke 45(12):417–420

    Article  CAS  Google Scholar 

  • Juliano BO (1984) Chapter XVI—Rice starch: production, properties, and uses. In: Whistler RL, Bemiller JN, Paschall EF (eds) Starch: chemistry and technology (second edition). Academic Press, San Diego, pp 507–528. https://doi.org/10.1016/B978-0-12-746270-7.50022-7

    Chapter  Google Scholar 

  • Kang T-Y, Sohn KH, Yoon M-R, Lee J-S, Ko S (2015) Effect of the shape of rice starch granules on flour characteristics and gluten-free bread quality. Int J Food Sci Technol 50(8):1743–1749

    Article  CAS  Google Scholar 

  • Kitta K, Ebihara M, Iizuka T, Yoshikawa R, Isshiki K, Kawamoto S (2005) Variations in lipid content and fatty acid composition of major non-glutinous rice cultivars in Japan. J Food Compos Anal 18(4):269–278

    Article  CAS  Google Scholar 

  • Lai V, Shen MC, Yeh AI, Juliano BO, Lii CY (2001) Molecular and gelatinization properties of rice starches from IR24 and sinandomeng cultivars. Cereal Chem 78(5):596–602

    Article  CAS  Google Scholar 

  • Laurence L, Dongzhi W, Hyun-Jung C, Qiang, Liu (2011) Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll 25(5):968–975

    Article  Google Scholar 

  • Li C, Gong B (2020) Insights into chain-length distributions of amylopectin and amylose molecules on the gelatinization property of rice starches. Int J Biol Macromol 155:721–729

    Article  CAS  PubMed  Google Scholar 

  • Li C, Gong B, Huang T, Yu W-W (2020a) In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains. Carbohydr Polym 254(8):117275

    PubMed  Google Scholar 

  • Li C, Luo J-X, Zhang C-Q, Yu W-W (2020b) Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocoll 108:106064

    Article  CAS  Google Scholar 

  • Li C, Powell PO, Gilbert RG (2017) Recent progress toward understanding the role of starch biosynthetic enzymes in the cereal endosperm. Amylase 1(1):59–74

    Article  Google Scholar 

  • Li H, Dhital S, Slade AJ, Yu W, Gilbert RG, Gidley MJ (2019) Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocoll 92:51–59

    Article  CAS  Google Scholar 

  • Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG (2016) The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem 196:702–711

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yan S, Yang L, Xu M, Ji J, Mao H, Song Y, Wang J, Sun B (2020c) Starch gelatinization in the surface layer of rice grains is crucial in reducing the stickiness of parboiled rice. Food Chem 341(Pt 2):128202

    PubMed  Google Scholar 

  • Matveev YI, van Soest JJG, Nieman C, Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP (2001) The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr Polym 44(2):151–160

    Article  CAS  Google Scholar 

  • Mestres C, Briffaz A, Valentin D (2019) 12 - Rice cooking and sensory quality. In: Bao J (ed) Rice (fourth edition). AACC International Press, pp 385–426

    Google Scholar 

  • Michael J, Gidley, Paul V, Bulpin (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr Res 161(2):291–300

    Article  Google Scholar 

  • Nada SS, Zou W, Li C, Gilbert RG (2017) Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Anal Bioanal Chem 409:6813–6819

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Cui J, Zhang X, Yang F, Xu X, Sheng H, Ohtsubo KI (2016) Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars. Biosci Biotechnol Biochem 80(12):2437–2449

    Article  CAS  PubMed  Google Scholar 

  • Noda T, Nishiba Y, Sato T, Suda I (2003) Properties of starches from several low-amylose rice cultivars. Cereal Chem 80(2):193–197

    Article  CAS  Google Scholar 

  • O’Shea M, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labelling and high-resolution separation. Carbohydr Res 105(1-2):1–12

    Article  Google Scholar 

  • Okuda M, Aramaki I, Koseki T, Satoh H, Hashizume K (2005) Structural characteristics, properties, and in vitro digestibility of rice. Cereal Chem 82(4):361–368

    Article  CAS  Google Scholar 

  • Palav T, Seetharaman K (2006) Mechanism of starch gelatinization and polymer leaching during microwave heating. Carbohydr Polym 65(3):364–370

    Article  CAS  Google Scholar 

  • Park IM, Ibáñez A, Shoemaker CF (2010) Rice starch molecular size and its relationship with amylose content. Starch - Stärke 59(2):69–77

    Article  Google Scholar 

  • Park IM, Ibáñez AM, Shoemaker CF (2007) Rice starch molecular size and its relationship with amylose content. Starch - Stärke 59(2):69–77

    Article  CAS  Google Scholar 

  • Patindol J, Wang YJ (2002) Fine structures of starches from long-grain rice cultivars with different functionality. Cereal Chem 79(3):465–469

    Article  CAS  Google Scholar 

  • Patindol JA, Siebenmorgen TJ, Wang Y-J (2015) Impact of environmental factors on rice starch structure: a review. Starch - Stärke 67(1-2):42–54

    Article  CAS  Google Scholar 

  • Perez M, Juliano BO (1978) Modification of the simplified amylose test for milled rice. Starch - Stärke 30(12):424–426

    Article  CAS  Google Scholar 

  • Syahariza ZA, Sar S, Hasjim J, Tizzotti MJ, Gilbert RG (2013) The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem 136(2):742–749

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1986) Purification and structure of amylose from rice starch. Carbohydr Res 148(2):299–308

    Article  CAS  Google Scholar 

  • Takeda Y, Shibahara S, Hanashiro I (2003) Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr Res 338(5):471–475

    Article  CAS  PubMed  Google Scholar 

  • Tao K, Li C, Yu W, Gilbert RG, Li E (2018) How amylose molecular fine structure of rice starch affects functional properties. Carbohydr Polym 204:24–31

    Article  PubMed  Google Scholar 

  • Tao K, Yu W, Prakash S, Gilbert RG (2019) High-amylose rice: starch molecular structural features controlling cooked rice texture and preference. Carbohydr Polym 219:251–260

    Article  CAS  PubMed  Google Scholar 

  • Tikapunya T, Zou W, Yu W, Powell PO, Fox GP, Furtado A, Henry RJ, Gilbert RG (2017) Molecular structures and properties of starches of Australian wild rice. Carbohydr Polym 172:213–222

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte GE, Delcour JA (2004) From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr Polym 58(3):245–266

    Article  CAS  Google Scholar 

  • Wang K, Wambugu PW, Zhang B, Wu AC, Henry RJ, Gilbert RG (2015a) The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydr Polym 129:92–100

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li C, Copeland L, Niu Q, Wang S (2015b) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14(5):568–585

    Article  CAS  Google Scholar 

  • Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA (2012) Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties—a review. Compr Rev Food Sci Food Saf 11(5):417–436

    Article  CAS  Google Scholar 

  • Wong KS, Jane JJ (1997) Quantitative analysis of debranched amylopectin by HPAEC-PAD with a postcolumn enzyme reactor. J Liq Chromatogr Relat Technol 20(2):297–310

    Article  CAS  Google Scholar 

  • Wu AC, Li EP, Gilbert RG (2014) Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr Polym 114:36–42

    Article  CAS  PubMed  Google Scholar 

  • Wu AC, Witt T, Gilbert RG (2013) Characterization methods for starch-based materials: state of the art and perspectives. Aust J Chem 66(12):1550–1563

    Article  CAS  Google Scholar 

  • Yang F, Chen Y, Tong C, Huang Y, Xu F, Li K, Corke H, Sun M, Bao J (2014) Association map** of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breed 34(4):1747–1763

    Article  CAS  Google Scholar 

  • Yasuhito T, Susumu H, Bienvenido O, Juliano. (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168(1):79–88

    Article  Google Scholar 

  • Yu S, Ma Y, Sun DW (2009) Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J Cereal Sci 50(2):139–144

    Article  CAS  Google Scholar 

  • Yu W, Li H, Zou W, Tao K, Zhu J, Gilbert RG (2019a) Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends Food Sci Technol 86:530–536

    Article  CAS  Google Scholar 

  • Yu W, Tao K, Gidley MJ, Fox GP, Gilbert RG (2019b) Molecular brewing: molecular structural effects involved in barley malting and mashing. Carbohydr Polym 206:583–592

    Article  Google Scholar 

  • Yu W, Tao K, Gilbert RG (2018) Improved methodology for analyzing relations between starch digestion kinetics and molecular structure. Food Chem 264:284–292

    Article  CAS  PubMed  Google Scholar 

  • Zhong F, Yokoyama W, Wang Q, Shoemaker CF (2006) Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem 54(6):2320–2326

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Yu W, Zhang C, Zhu Y, Xu J, Li E, Gilbert RG, Liu Q (2020) New insights into amylose and amylopectin biosynthesis in rice endosperm. Carbohydr Polym 230:115656

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, W., Li, C. (2023). The Structure of Rice Starch and its Application. In: Tian, J., Ogawa, Y., Singh, J., Kaur, L. (eds) Science of Rice Chemistry and Nutrition. Springer, Singapore. https://doi.org/10.1007/978-981-99-3224-5_2

Download citation

Publish with us

Policies and ethics

Navigation