• 80 Accesses

Abstract

The era of using fossil fuels as the main source of energy has been fading in our modern society. The advancement of several energy harvesting, converting, and storage technologies lessens the negative effects of human activity on the environment while also improving all facets of our life. Advanced large-scale energy storage technologies are essential for the efficient use of renewable resources and the maintenance of the future smart grid’s dependability. For large-scale applications, there are typically two types of energy storage technologies: physical energy storage systems (such as pump hydro, compressed air, and flywheels) and electrochemical devices (i.e., rechargeable batteries). Rechargeable batteries stand out among them, thanks to their superior energy conversion efficiency, viability for distributed locations, and ease of maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birk J, Steunenberg R (1975) Chemical investigations of lithium-sulfur cells. In: ACS Publications

    Google Scholar 

  • Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783

    Article  CAS  Google Scholar 

  • Chen H, Wang C, Dong W, Lu W, Du Z, Chen L (2015) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15(1):798–802

    Article  CAS  PubMed  Google Scholar 

  • Cheon S-E, Ko K-S, Cho J-H, Kim S-W, Chin E-Y, Kim H-T (2003) Rechargeable lithium sulfur battery: I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150(6):A796

    Article  CAS  Google Scholar 

  • Cong R, Choi J-Y, Song J-B, Jo M, Lee H, Lee C-S (2021) Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Dong C, Gao W, ** B, Jiang Q (2018) Advances in cathode materials for high-performance lithium-sulfur batteries. IScience 6:151–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Luo Y, Yang Y, Xue W, Liu G, Li J (2022) COFs-confined multifunctional sulfur-host design towards high-performance lithium-sulfur batteries. Chem Eng J 442:135823

    Article  CAS  Google Scholar 

  • Duan L, Zhang F, Wang L (2016) Cathode materials for lithium sulfur batteries: design, synthesis, and electrochemical performance. In: Alkali-ion Batteries. IntechOpen, London

    Google Scholar 

  • Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823

    Article  Google Scholar 

  • Fu Y, Wu Z, Yuan Y, Chen P, Yu L, Yuan L, …, Kan E (2020) Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat Commun 11(1):845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu S, Sun C, Xu D, Lu Y, ** J, Wen Z (2018) Recent progress in liquid electrolyte-based li–s batteries: shuttle problem and solutions. Electrochem Energ Rev 1(4):599–624

    Article  CAS  Google Scholar 

  • Hoang HA, Kim D (2022) High performance solid-state lithium-sulfur battery enabled by multi-functional cathode and flexible hybrid solid electrolyte. Small, 2202963

    Google Scholar 

  • Kim H, Lee J, Ahn H, Kim O, Park MJ (2015) Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nat Commun 6(1):1–10

    Google Scholar 

  • Kuang Y, Chen C, Kirsch D, Hu L (2019) Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater 9(33):1901457

    Article  Google Scholar 

  • Kulkarni P, Nataraj S, Balakrishna RG, Nagaraju D, Reddy M (2017) Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A 5(42):22040–22094

    Article  CAS  Google Scholar 

  • Li X, Ding Z, Zhang L, Tang R, He Y (2017) Enhanced performance of lithium sulfur batteries with sulfur embedded in Sm2O3-doped carbon aerogel as cathode material. Electrochim Acta 241:197–207

    Article  CAS  Google Scholar 

  • Li G, Lei W, Luo D, Deng Y, Deng Z, Wang D, …, Chen Z (2018) Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ Sci 11(9):2372–2381

    Article  CAS  Google Scholar 

  • Li F, Liu Q, Hu J, Feng Y, He P, Ma J (2019) Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale 11(33):15418–15439

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yuan L, Liu D, Li Z, Chen J, Yuan K, …, Huang Y (2020) High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries. Energy Storage Materials 26:570–576

    Article  Google Scholar 

  • Li S, Guo, X, Zhao L, Chen F, Wang X, Chu Y, …, Zhu Y (2022a) NiCo2O4 nanofiber cluster assisted by NH4F growing on 3D graphene as a binder-free electrode for lithium-ion batteries. Energy Fuel 36(2):1072–1080

    Article  CAS  Google Scholar 

  • Li Y, Xu J, Mi L, Huo K (2022b) 3D interconnected N-doped carbon/sulfur derived from organic-inorganic hybrid ZnS Superlattice Nanorods for high-performance lithium-sulfur batteries. Chem Lett 51(4):386–390

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Cao L, Shang C, Wang Z, Wang H, …, Li J (2017) Understanding and suppressing side reactions in Li–air batteries. Mater Chem Front 1(12):2495–2510

    Article  CAS  Google Scholar 

  • Liu D, Li Z, Li X, Cheng Z, Yuan L, Huang Y (2019a) Recent advances in cathode materials for room-temperature sodium− sulfur batteries. ChemPhysChem 20(23):3164–3176

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhang C, Su J, Chen X, Ma T, Huang T, Yu A (2019b) Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 11(23):20788–20795

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Hu H, Ding X, Yuan H, ** C, Nai J, …, Tao X (2020) 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Materials 30:346–366

    Article  Google Scholar 

  • Ma L, Hendrickson KE, Wei S, Archer LA (2015) Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10(3):315–338

    Article  CAS  Google Scholar 

  • Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Ming J, Li M, Kumar P, Li L-J (2016) Multilayer approach for advanced hybrid lithium battery. ACS Nano 10(6):6037–6044

    Article  CAS  PubMed  Google Scholar 

  • Qiu M, Fu X, Yang F, Qi S, Wu Z, Zhong WH (2021) In-situ synthesis of N, O, P-doped hierarchical porous carbon from poly-bis (phenoxy) phosphazene for polysulfide-trap** interlayer in lithium-sulfur batteries. Chemistry–A Eur J 27(38):9876–9884

    Article  CAS  Google Scholar 

  • Rauh R, Abraham K, Pearson G, Surprenant J, Brummer S (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523

    Article  CAS  Google Scholar 

  • Rehman S, Khan K, Zhao Y, Hou Y (2017) Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5(7):3014–3038

    Article  CAS  Google Scholar 

  • Rehman S, Pope M, Tao S, McCalla E (2022) Evaluating the effectiveness of in situ characterization techniques in overcoming mechanistic limitations in lithium–sulfur batteries. Energy Environ Sci 15(4):1423–1460

    Article  Google Scholar 

  • Wang H, Zhang C, Chen Z, Liu HK, Guo Z (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787

    Article  CAS  Google Scholar 

  • Wang X, Khachai H, Khenata R, Yuan H, Wang L, Wang W, …, Guo R (2017) Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: a first-principles study. Sci Rep 7(1):1–13

    PubMed  PubMed Central  Google Scholar 

  • Wang, B., **, F., **e, Y., Luo, H., Wang, F., Ruan, T., . . . Dou, S. (2020). Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Materials 26:433–442

    Article  Google Scholar 

  • Wang M, Bai Z, Yang T, Nie C, Xu X, Wang Y, …, Wang N (2022) Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv Energy Mater 2201585

    Google Scholar 

  • Wu F, Chen S, Srot V, Huang Y, Sinha SK, van Aken PA, …, Yu Y (2018) A sulfur–limonene-based electrode for lithium–sulfur batteries: high-performance by self-protection. Adv Mater 30(13):1706643

    Article  Google Scholar 

  • Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1–3):129–134

    Article  CAS  Google Scholar 

  • Yan B-L, Jun D, Wang J, Yang T, Mao X-H (2022) A simplified electrophoretic deposition route for sandwiched structure-based Mn3O4/G composite electrodes as high-capacity anodes for lithium-ion batteries. J Alloys Compd 905:164121

    Article  CAS  Google Scholar 

  • Yang D, Liao X-Z, Shen J, He Y-S, Ma Z-F (2014) A flexible and binder-free reduced graphene oxide/Na 2/3 [Ni 1/3 Mn 2/3] O2 composite electrode for high-performance sodium ion batteries. J Mater Chem A 2(19):6723–6726

    Article  CAS  Google Scholar 

  • Yeşilot S, Küçükköylü S, Mutlu T, Demir E, Demir-Cakan R (2022) Highly sulfur-rich polymeric cathode materials via inverse vulcanization of sulfur for lithium–sulfur batteries. Mater Chem Phys 285:126168

    Article  Google Scholar 

  • Yoshida L, Hakari T, Matsui Y, Ishikawa M (2022) Polyglycerol-functionalized microporous carbon/sulfur cathode for Li-S battery. Electrochim Acta 429:141000

    Article  CAS  Google Scholar 

  • Yuan H, Huang JQ, Peng HJ, Titirici MM, **ang R, Chen R, …, Zhang Q (2018) A review of functional binders in lithium–sulfur batteries. Adv Energy Mater 8(31):1802107

    Article  Google Scholar 

  • Zhang S, Zhong N, Zhou X, Zhang M, Huang X, Yang X, …, Liang X (2020) Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets. Nano-Micro Lett 12(1):1–13

    Article  Google Scholar 

  • Zhao Y, Wu W, Li J, Xu Z, Guan L (2014) Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26(30):5113–5118

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zou J, Cheng H, Gu Y, Lu Z (2019) High energy batteries based on sulfur cathode. Green Energy Environ 4(4):345–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, B., Sagir, M., Nazir, S., Tahir, M.B. (2024). Current Collectors for Li-S Batteries. In: Tahir, M.S., Tahir, M.B., Sagir, M., Asiri, A.M. (eds) Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-2796-8_6

Download citation

Publish with us

Policies and ethics

Navigation