Abstract

The growing acceptance of electric vehicles across the globe is the main factor driving the trend toward mobile electrification, which has resulted in an unparalleled increase in the demand for lithium-ion batteries. Consequently, it is now more important than ever to recycle batteries. The lithium-sulfur (Li-S) battery is being explored as a potential replacement for the present lithium-ion battery. It releases energy by combining lithium metal with highly plentiful sulfur. The Li-S battery can obtain a high theoretical specific capacity of 1675 mAh/g and specific energy of 2600 Wh/kg due to the sulfur cathode’s lightweight and multi-electron reaction. The “shuttle effect” of lithium polysulfides, significant volume changes, weak conductivity of sulfur and its solid-state derivatives, and the self-discharge phenomenon, on the other hand, restrict its practical utilization. The “shuttle effect” is acknowledged as the most significant issue influencing electrochemical performance out of all of these. Some of these techniques have shown early promise, but more work is required to reach a high enough performance level so that lithium metal may be employed in commercial Li-S cells. In this chapter, we examine the advantages and disadvantages of numerous suggested approaches to these problems, kee** in mind the constant objective of outperforming traditional Li-ion energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini M, Hwang JY, Kim HM, Bruni P, Brutti S, Croce F, . . . Sun YK (2018) Minimizing the electrolyte volume in Li–S batteries: a step forward to high gravimetric energy density. Adv Energy Mater 8(26):1801560

    Article  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  • Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review. Chem Commun 49(90):10545–10562

    Article  CAS  Google Scholar 

  • Bucur CB, Jones M, Kopylov M, Spear J, Muldoon J (2017) Inorganic–organic layer by layer hybrid membranes for lithium–sulfur batteries. Energy Environ Sci 10(4):905–911

    Article  CAS  Google Scholar 

  • Cheng X-B, Yan C, Huang J-Q, Li P., Zhu L, Zhao L, . . . Zhang Q (2017) The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater 6:18–25

    Article  Google Scholar 

  • Chung S-H, Chang C-H, Manthiram A (2016) A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries. ACS Nano 10(11):10462–10470

    Article  CAS  PubMed  Google Scholar 

  • Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  • Fan FY, Chiang Y-M (2017) Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J Electrochem Soc 164(4):A917

    Article  CAS  Google Scholar 

  • Fan FY, Carter WC, Chiang YM (2015) Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv Mater 27(35):5203–5209

    Article  CAS  PubMed  Google Scholar 

  • Fan FY, Pan MS, Lau KC, Assary RS, Woodford WH, Curtiss LA, . . . Chiang Y-M (2016) Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries. J Electrochem Soc 163(14):A3111

    Article  CAS  Google Scholar 

  • Fang R, Zhao S, Hou P, Cheng M, Wang S, Cheng HM, . . . Li F (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv Mater 28(17):3374–3382

    Article  CAS  PubMed  Google Scholar 

  • Frischmann PD, Hwa Y, Cairns EJ, Helms BA (2016) Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando. Chem Mater 28(20):7414–7421

    Article  CAS  Google Scholar 

  • Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46(5):1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Haubner K, Murawski J, Olk P, Eng LM, Ziegler C, Adolphi B, Jaehne E (2010) The route to functional graphene oxide. ChemPhysChem 11(10):2131–2139

    Article  CAS  PubMed  Google Scholar 

  • Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, . . . Cheng B (2016) A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8(37):16541–16588

    Article  CAS  PubMed  Google Scholar 

  • Kong L, ** Q, Huang JQ, Zhao LD, Li P, Li BQ, . . . Zhang Q (2019) Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium–sulfur pouch cells. Energ Technol 7(12):1900111

    Article  CAS  Google Scholar 

  • Li W, Cha J, Zheng G, Yang Y, McDowell M, Hsu P, Cui Y (2013) Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 4:1331–1331

    Article  PubMed  Google Scholar 

  • Li BQ, Kong L, Zhao CX, ** Q, Chen X, Peng HJ, . . . Zhang Q (2019a) Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat 1(4):533–541

    Article  CAS  Google Scholar 

  • Li B-Q, Peng H-J, Chen X, Zhang S-Y, **e J, Zhao C-X, Zhang Q (2019b) Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium–sulfur batteries. CCS Chem 1(1):128–137

    Article  CAS  Google Scholar 

  • Li Y, Shapter JG, Cheng H, Xu G, Gao G (2021) Recent progress in sulfur cathodes for application to lithium–sulfur batteries. Particuology 58:1–15

    Article  Google Scholar 

  • Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Article  CAS  PubMed  Google Scholar 

  • Manthiram A, Chung SH, Zu C (2015) Lithium–sulfur batteries: progress and prospects. Adv Mater 27(12):1980–2006

    Article  CAS  PubMed  Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-W, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic liquid electrolytes for lithium–sulfur batteries. J Phys Chem C 117(40):20531–20541

    Article  CAS  Google Scholar 

  • Park H, Lim H-D, Lim H-K, Seong WM, Moon S, Ko Y, . . . Kang K (2017) High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nat Commun 8(1):1–10

    Article  Google Scholar 

  • Peng H-J, Huang J-Q, Zhang Q (2017) A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chem Soc Rev 46(17):5237–5288

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Zhao X, Wang S, Chen K, Wei Y, Chen G, . . . Li F (2018) Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium–sulfur batteries. J Mater Chem A 6(29):14359–14366

    Article  CAS  Google Scholar 

  • Rana M, Li M, Huang X, Luo B, Gentle I, Knibbe R (2019) Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J Mater Chem A 7(12):6596–6615

    Article  CAS  Google Scholar 

  • Song B, Wang T, Sun H, Shao Q, Zhao J, Song K, . . . Guo Z (2017) Two-step hydrothermally synthesized carbon nanodots/WO 3 photocatalysts with enhanced photocatalytic performance. Dalton Trans 46(45):15769–15777

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang W, Liu H, Guo Z (2016) A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries. Angew Chem Int Ed 55(12):3992–3996

    Article  CAS  Google Scholar 

  • Wang C, Zhao M, Li J, Yu J, Sun S, Ge S, . . . Wujcik EK (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Yuan H, Liu H, Liu C, Li T, . . . Guo Z (2018a) Non-covalently functionalized graphene strengthened poly (vinyl alcohol). Mater Des 139:372–379

    Article  CAS  Google Scholar 

  • Wang L, Ye Y, Chen N, Huang Y, Li L, Wu F, Chen R (2018b) Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv Funct Mater 28(38):1800919

    Article  Google Scholar 

  • Weller C, Pampel J, Dörfler S, Althues H, Kaskel S (2019) Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium–sulfur batteries. Energ Technol 7(12):1900625

    Article  CAS  Google Scholar 

  • Yu X, Manthiram A (2017) Electrode–electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes. Acc Chem Res 50(11):2653–2660

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Peng H-J, Hou T-Z, Huang J-Q, Chen C-M, Wang D-W, . . . Zhang, Q (2016) Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16(1):519–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ueno K, Dokko K, Watanabe M (2015) Recent advances in electrolytes for lithium–sulfur batteries. Adv Energy Mater 5(16):1500117

    Article  Google Scholar 

  • Zhang Y, Gao Z, Song N, He J, Li X (2018a) Graphene and its derivatives in lithium–sulfur batteries. Mater Today Energy 9:319–335

    Article  Google Scholar 

  • Zhang G, Peng HJ, Zhao CZ, Chen X, Zhao LD, Li P, . . . Zhang Q (2018b) The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew Chem 130(51):16974–16978

    Article  Google Scholar 

  • Zhao M, Li B-Q, Zhang X-Q, Huang J-Q, Zhang Q (2020) A perspective toward practical lithium–sulfur batteries. ACS Cent Sci 6(7):1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalid, I., Sagir, M., Tahir, M.B. (2024). Challenges and Future Perspectives of Li–S Batteries. In: Tahir, M.S., Tahir, M.B., Sagir, M., Asiri, A.M. (eds) Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-2796-8_13

Download citation

Publish with us

Policies and ethics

Navigation