Synthetic Biology-Related Multiomics Data Integration and Data Mining Techniques

  • Chapter
  • First Online:
Synthetic Biology and iGEM: Techniques, Development and Safety Concerns
  • 254 Accesses

Abstract

The success of a synthetic biology project is heavily dependent on omics studies, while multiomics data integration and data mining techniques have served as the foundation for rational synthetic biology work. Multiomics combines multiple types of omics data, including genomics, transcriptomics, proteomics, epigenomics, and microbiomics. It is foreseeable that multiomics research will be widely used in many biological problems to reveal more profound omics patterns. In this chapter, we have described and explained the basics of multiomics data integration and data mining techniques, which could be helpful for conducting synthetic biology studies, especially those that focus on the utilization of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keshava, R., et al.: Chapter 4—Synthetic biology: overview and applications. In: Barh, D., Azevedo, V. (eds.) Omics Technologies and Bio-Engineering, pp. 63–93. Academic Press (2018)

    Chapter  Google Scholar 

  2. Osier, N.D., et al.: Symptom science: repurposing existing omics data. Biol. Res. Nurs. 19(1), 18–27 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Manzoni, C., et al.: Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19(2), 286–302 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Sun, Y.V., Hu, Y.-J.: Chapter three - integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. In: Friedmann, T., Dunlap, J.C., Goodwin, S.F. (eds.) Advances in Genetics, pp. 147–190. Academic Press (2016)

    Google Scholar 

  5. Chung, R.-H., Kang, C.-Y.: A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification. GigaScience. 8, 5 (2019)

    Article  Google Scholar 

  6. Dong, Z., Chen, Y.: Transcriptomics: advances and approaches. Sci. China Life Sci. 56(10), 960–967 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Marchesi, J.R., Ravel, J.: The vocabulary of microbiome research: a proposal. Microbiome. 3(1), 31 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar, P.S.: Microbiomics: were we all wrong before? Periodontology.85(1), 8–11 (2021)

    Article  Google Scholar 

  9. Chakraborty, S.A.-O.X., et al.: Onco-Multi-OMICS approach: a new frontier in cancer research. Biomed. Res. Int.2018, 9836256 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Portin, P.: The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J. Genet.93(1), 293–302 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Heather, J.M., Chain, B.: The sequence of sequencers: the history of sequencing DNA. Genomics. 107(1), 1–8 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. GarcÚa-Quesada, A.A.-O., et al.: Seroprevalence and prevalence of Babesia vogeli in clinically healthy dogs and their ticks in Costa Rica. J. Genet.93, 293–302 (2014)

    Google Scholar 

  13. Fraser, C.M., Rappuoli, R.: Application of microbial genomic science to advanced therapeutics. Annu. Rev. Med. 56(1), 459–474 (2004)

    Article  Google Scholar 

  14. Zhang, M.Q.: Promoter analysis of co-regulated genes in the yeast genome. Comput. Chem. 23(3), 233–250 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res.36(Database issue), D344–D350 (2008)

    CAS  PubMed  Google Scholar 

  16. Benson, D.A., et al.: GenBank. Nucleic Acids Res. 46(D1), D41–D47 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Wishart, D.S., et al.: HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46(D1), D608–D617 (2017)

    Article  PubMed Central  Google Scholar 

  18. Kanehisa, M., et al.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gluth, S., Rieskamp, C., Fau-Bﺴchel, J., Bﺴchel, C.: Deciding not to decide: computational and neural evidence for hidden behavior in sequential choice. PLoS Comput. Biol.9(10), e1003309 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen, R., Olshen, M., Fau-Ladanyi, A., Ladanyi, M.: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics.25(22), 2906–2912 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pierre-Jean, M., et al.: Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration. Brief. Bioinform.21(6), 2011–2030 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. LRAcluster. http://lifeome.net/software/lracluster/

  23. Hasin, Y., Seldin, M., Lusis, A.: Multi-omics approaches to disease. Genome Biol. 18(1), 83 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palazzotto, E., Weber, T.: Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr. Opin. Microbiol.45, 109–116 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Hasin, Y., Seldin, M., Lusis, A.: Multi-omics approaches to disease. Genome Biol.18(1), 83 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garrett-Bakelman Francine, E., et al.: The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 364(6436), eaau8650 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pang, Y.J., et al.: A multi-omics approach to investigate the etiology of non-communicable diseases: recent advance and applications. Zhonghua Liu **ng Bing Xue Za Zhi. 42(1), 1–9 (2021)

    CAS  PubMed  Google Scholar 

  28. Zhou, W., et al.: Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature. 569(7758), 663–671 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schüssler-Fiorenza Rose, S.M., et al.: A longitudinal big data approach for precision health. Nat. Med. 25(5), 792–804 (2019)

    Article  PubMed  Google Scholar 

  30. Liu, J., et al.: Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug–metabolite atlas. Nat. Med. 26(1), 110–117 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ning, K., Li, Y. (2023). Synthetic Biology-Related Multiomics Data Integration and Data Mining Techniques. In: Ning, K., Zhan, Y. (eds) Synthetic Biology and iGEM: Techniques, Development and Safety Concerns. Springer, Singapore. https://doi.org/10.1007/978-981-99-2460-8_3

Download citation

Publish with us

Policies and ethics

Navigation