Automatic Packaging System Based on Machine Vision

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1787))

Included in the following conference series:

  • 692 Accesses

Abstract

In the industrial production line, putting several small packages into large packages with the required arrangement rules still requires a lot of manual work to complete. In order to solve this problem, we build an automatic robot gras** system based on robotic arm, industrial camera and a uniform-speed conveyor, which can automatically put small packages into large packages. We use the YOLO algorithm to identify the position, category and number of small packages. The number of snacks identified is utilized to plan the degree of gripper closure. The trajectory of the small packages can be predicted according to the speed of the conveyor and the position of small packages on the robot coordinate system, then we fuse multiple predicted trajectories to form a complete and coherent robot arm trajectory to grasp the small packages and put them into large packages. This system can save a large amount of labor and reflect the intelligence of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akinola, I., Xu, J., Song, S., Allen, P.K.: Dynamic gras** with reachability and motion awareness. In: 2021 IEEERSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9422–9429 (2021)

    Google Scholar 

  2. Boschetti, G.: A picking strategy for circular conveyor tracking. J. Intell. Robot. Syst.: Theory Appl. 81, 241–255 (2016)

    Google Scholar 

  3. Chwa, D., Kang, J., Choi, J.Y.: Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35(6), 831–843 (2005)

    Article  Google Scholar 

  4. Coleman, D., Sucan, I.A., Moll, M., Okada, K., Correll, N.:Experience-based planning with sparse roadmap spanners. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 26–30 May 2015, pp. 900–905. IEEE (2015)

    Google Scholar 

  5. Cowley, A., Cohen, B., Marshall, W., Taylor, C.J., Likhachev, M.:Perception and motion planning for pick-and-place of dynamic objects. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 816–823 (2013)

    Google Scholar 

  6. Daxiao, H., Zhibing, S., Xue, S.: Design of a machine vision-based delta robot sorting and tracking system. Mach. Tools Hydraulics 47(17), 7 (2019)

    Google Scholar 

  7. Garrett, C.R., Lozanopérez, T., Kaelbling, L.P.: Backward-forward search for manipulation planning. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2015)

    Google Scholar 

  8. Islam, F., Salzman, O., Agarwal, A., Likhachev, M. : Provably constant-time planning and replanning for real-time gras** objects off a conveyor belt (2020)

    Google Scholar 

  9. Kragic, D., Christensen, H.I.: A framework for visual servoing. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 345–354. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36592-3_33

    Chapter  Google Scholar 

  10. Kragic, D., Christensen, H.I., et al.: Survey on visual servoing for manipulation. Comput. Vis. Active Percept. Lab. Fiskartorpsv 15, 2002 (2002)

    Google Scholar 

  11. Li, Y., Huang, T., Chetwynd, D.G.: An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines. Mech. Mach. Theory 126, 479–490 (2018)

    Article  Google Scholar 

  12. Li, Z., Ren, Y., Lin, J.: Robot dynamic tracking and gras** method based on online prediction and planning. Autom. Instrum., 000–010 (2021)

    Google Scholar 

  13. Martin, S.R., Wright, S.E., Sheppard, J.W.: Offline and online evolutionary bi-directional RRT algorithms for efficient re-planning in dynamic environments. In: IEEE International Conference on Automation Science and Engineering. CASE (2007)

    Google Scholar 

  14. Mehrandezh, M., Sela, N.M., Fenton, R.G., Benhabib, B.: Robotic interception of moving objects using an augmented ideal proportional navigation guidance. In: IEEE Transactions on Systems Man & Cybernetics Part A (2000)

    Google Scholar 

  15. Menon, A., Cohen, B., Likhachev, M.: Motion planning for smooth pickup of moving objects. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 453–460 (2014)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. ar**v e-prints (2018)

    Google Scholar 

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2016)

    Google Scholar 

  18. Schmitt, P.S., Neubauer, W., Feiten, W., Wurm, K.M., Wichert, G.V., Burgard, W.: Optimal, sampling-based manipulation planning. In: IEEE International Conference on Robotics & Automation (2017)

    Google Scholar 

  19. Shin, I.S., Nam, S.H., Roberts, R.G., Moon, S.B.: Minimum-time algorithm for intercepting an object on the conveyor belt by robot. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation, p. 362367 (2007)

    Google Scholar 

  20. Tingting, S., Zhang, H., Wang, Y., Qin, X.: Delta robot dynamic target gras** algorithm based on Ferrari method. J. Huazhong Univ. Sci. Technol.: Nat. Sci. Ed. 46(6), 5 (2018)

    Google Scholar 

  21. Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., Asfour, T., Dillmann, R.: Visual servoing for humanoid gras** and manipulation tasks. In: Humanoids 2008 8th IEEE-RAS International Conference on Humanoid Robots, pp. 406–412 (2008)

    Google Scholar 

Download references

Acknowledgement

The work was jointly supported by Bei**g Natural Science Foundation (4212933), Scientific Research Project of Bei**g Educational Committee (KM202110005023) and National Natural Science Foundation of China (62273012, 62003010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Fang, J., Yu, P. (2023). Automatic Packaging System Based on Machine Vision. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation