Asynchronous and Decentralized Multiagent Trajectory Planning in Dense Environments

  • Conference paper
  • First Online:
Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022) (ICAUS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1010))

Included in the following conference series:

  • 255 Accesses

Abstract

This paper proposes an online decentralized and asynchronous multiagent trajectory planning algorithm in dense environments. In our algorithm, the optimization problem is transformed into a quadratic programming (QP) problem to reduce the computational complexity by constructing the optimal linear flight corridors (OLFC). A cooperation-based deconfliction framework is designed to ensure the safety and feasibility under the decentralized and asynchronous architecture. We conduct a large number of simulations to verify the reliability and efficiency of our algorithm in dense environments with higher success rate, less computational time and total navigation time, which is more aggressive and cooperative.

This work is funded by National Natural Science Foundation of China (61803309), Key Research and Development Project of Shaanxi Province (2020ZDLGY06-02, 2021ZDLGY07-03), Aeronautical Science Foundation of China (2019ZA053008, 20185553034), CETC Key Laboratory of Data Link Technology Open Project Fund (\(\mathrm {CLDL-20202101_{-}2}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 559.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 699.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 699.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chung, S.J., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Rob. 34(4), 837–855 (2018). https://doi.org/10.1109/TRO.2018.2857475

    Article  Google Scholar 

  2. Chen, Y., Cutler, M., How, J.P.: Decoupled multiagent path planning via incremental sequential convex programming. In: IEEE International Conference on Robotics and Automation, pp. 5954–5961 (2015). https://doi.org/10.1109/ICRA.2015.7140034

  3. Tang, S., Thomas, J., Kumar, V.: Hold or take optimal plan (HOOP): a quadratic programming approach to multi-robot trajectory generation. Int. J. Robot. Res. 37(9), 1062–1084 (2018). https://doi.org/10.1177/0278364917741532

    Article  Google Scholar 

  4. Park, J., Kim, J., Jang, I., Kim, H.J.: Efficient multi-agent trajectory planning with feasibility guarantee using relative bernstein polynomial. In: IEEE International Conference on Robotics and Automation, pp. 434–440 (2020). https://doi.org/10.1109/ICRA40945.2020.9197162

  5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). https://doi.org/10.1177/027836499801700706

    Article  Google Scholar 

  6. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research, pp. 3–19. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19457-3_1

    Chapter  Google Scholar 

  7. Arul, S.H., Manocha, D.: DCAD: decentralized collision avoidance with dynamics constraints for agile quadrotor swarms. IEEE Robot. Autom. Lett. 5(2), 1191–1198 (2020). https://doi.org/10.1109/LRA.2020.2967281

    Article  Google Scholar 

  8. Tordesillas, J., How, J.P.: MADER: trajectory planner in multiagent and dynamic environments. IEEE Trans. Rob. 38(1), 463–476 (2022). https://doi.org/10.1109/TRO.2021.3080235

    Article  Google Scholar 

  9. Zhou, X., Zhu, J., Zhou, H., Xu, C., Gao, F.: Ego-swarm: a fully autonomous and decentralized quadrotor swarm system in cluttered environments. In: IEEE International Conference on Robotics and Automation, pp. 4101–4107 (2021). https://doi.org/10.1109/ICRA48506.2021.9561902

  10. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi cells. IEEE Robot. Autom. Lett. 2(2), 1047–1054 (2017). https://doi.org/10.1109/LRA.2017.2656241

    Article  Google Scholar 

  11. Park, J., Kim, D., Kim, G.C., Oh, D., Kim, H.J.: Online distributed trajectory planning for quadrotor swarm with feasibility guarantee using linear safe corridor. IEEE Robot. Autom. Lett. 7(2), 4869–4876 (2022). https://doi.org/10.1109/LRA.2022.3152702

    Article  Google Scholar 

  12. Qin, K.: General matrix representations for b-splines. In: Pacific Conference on Computer Graphics and Applications, pp. 37–43 (1998). https://doi.org/10.1109/PCCGA.1998.731996

  13. Zhou, B., Gao, F., Wang, L., Liu, C., Shen, S.: Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 4(4), 3529–3536 (2019). https://doi.org/10.1109/LRA.2019.2927938

    Article  Google Scholar 

  14. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985). https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985

    Article  Google Scholar 

  15. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: IEEE International Conference on Robotics and Automation, pp. 2520–2525 (2011). https://doi.org/10.1109/ICRA.2011.5980409

  16. Chen, J., Liu, T., Shen, S.: Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments. In: IEEE International Conference on Robotics and Automation, pp. 1476–1483 (2016). https://doi.org/10.1109/ICRA.2016.7487283

  17. Liu, S., et al.: Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments. IEEE Robot. Autom. Lett. 2(3), 1688–1695 (2017). https://doi.org/10.1109/LRA.2017.2663526

    Article  Google Scholar 

  18. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441

    Book  MATH  Google Scholar 

  19. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for quadratic programs. Math. Program. Comput. 12(4), 637–672 (2020). https://doi.org/10.1007/s12532-020-00179-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxiang Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Bei**g HIWING Sci. and Tech. Info Inst

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Hu, J., Zhao, C., Pan, Q. (2023). Asynchronous and Decentralized Multiagent Trajectory Planning in Dense Environments. In: Fu, W., Gu, M., Niu, Y. (eds) Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). ICAUS 2022. Lecture Notes in Electrical Engineering, vol 1010. Springer, Singapore. https://doi.org/10.1007/978-981-99-0479-2_15

Download citation

Publish with us

Policies and ethics

Navigation