Optical Polarization Phase Modulation with Lithium Niobate

  • Chapter
  • First Online:
Optical to Terahertz Engineering

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 23))

  • 475 Accesses

Abstract

Lithium Niobate crystal can be used to achieve tunable differential polarization phase modulation. A typical polarization phase tuning application based on optical polarization between the E-ray and O-ray components of a light wave is proposed. It is realized here that a trapezoidal-shaped block of the said crystal can be effectively employed to control the output intensity than by its regular geometrical forms. A relevant mathematical model for this effect is also proposed here. Again, the device parameters are optimized with the help of random optimization, which is based on a genetic algorithm. It is also shown that the phase difference between the two polarization components may be tuned using a multi-strip electrode configuration designed on the trapezoidal crystal block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Nishihara, M. Haruna, T. Suhara, Optical integrated circuit (McGraw-Hill, UK, 1989)

    Google Scholar 

  2. A. Yariv, P. Yeh, Optical waves in crystals: Wiley series in pure and applied optics (John Wiley and Sons, New York, 1984)

    Google Scholar 

  3. K. Suizu, K. Kawase, Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal. IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008). https://doi.org/10.1109/JSTQE.2007.911306

    Article  ADS  Google Scholar 

  4. Y.Y. Lin, S.T. Lin, G.W. Chang, A.C. Chiang, Y.C. Huang, Y.H. Chen, Electro-optic periodically domain inverted lithium niobate Bragg modulator as a laser Q-switch. Opt. Lett. 32(5), 545–547 (2007). https://doi.org/10.1364/OL.32.000545

    Article  ADS  Google Scholar 

  5. INRAD Lithium Niobate. http://www.lambdaphoto.co.uk/pdfs/Inrad_datasheet_LNB.pdf

  6. M.N. Palatnikov, N.V. Sidorov, V.I. Skiba, D.V. Makarov, I.V. Biryukova, Y.A. Serebryakov, O.E. Kravchenko, Y.I. Balabanov, V.T. Kalinnikov, Effects of nonstoichiometry and do** on the Curie temperature and defect structure of lithium niobate. Inorg. Mater. 36(5), 489–493 (2000). https://doi.org/10.1007/BF02758054

    Article  Google Scholar 

  7. B.T. Matthias, J. Remeika, Ferroelectricity in the ilmenite structure. Phys. Rev. 76(12), 1886–1887 (1949). https://doi.org/10.1103/PhysRev.76.1886.2

    Article  ADS  Google Scholar 

  8. A.M. Prokhorov, Y.S. Kuz'minov YS, Physics and chemistry of crystalline lithium niobate. (Adam Hilger, Bristol, 1990)

    Google Scholar 

  9. I. Pracka, A.L. Bajor, S.M. Kaczmarek, M. Wirkowicz, B. Kaczmarek, J. Kisielewski, T. Ukasiewicz, Growth and characterization of LiNbO3 single crystals doped with Cu and Fe ions. Cryst. Res. Technol. 34(5–6), 627–634 (1999). https://doi.org/10.1002/(SICI)1521-4079(199906)34:5/6%3c627::AID-CRAT627%3e3.0.CO;2-0

    Article  Google Scholar 

  10. R. Mouras, M.D. Fontana, P. Bourson, A.V. Postnikov, Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy. J. Phys.: Condens. Matter 12(23), 5053–5060 (2000). https://doi.org/10.1088/0953-8984/12/23/313

  11. K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic power supply system. J. Cryst. Growth 116(3–4), 327–332 (1992). https://doi.org/10.1016/0022-0248(92)90640-5

    Article  ADS  Google Scholar 

  12. P.F. Bordui, R.G. Norwood, D.H. Hundt, M.M. Frejer, Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 71(2), 875–879 (1992). https://doi.org/10.1063/1.351308

    Article  ADS  Google Scholar 

  13. A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau, Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 9(1), 72–73 (1966). https://doi.org/10.1063/1.1754607

    Article  ADS  Google Scholar 

  14. D.A. Bryan, R. Gerson, H.E. Tomaschke, Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44(9), 847–849 (1984). https://doi.org/10.1063/1.94946

    Article  ADS  Google Scholar 

  15. T. Volk, M. Wohlecke, Lithium niobate: Defects, photorefraction and ferroelectric switching. (Springer, Verlag, 2008)

    Google Scholar 

  16. M.D. Angelis, S.D. Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method. Appl. Phys. Lett. 85(14), 2785–2787 (2004). https://doi.org/10.1063/1.1797534

    Article  ADS  Google Scholar 

  17. Y. Chen, H. Zhan, B. Zhou, Refractive index modulation in periodically domain inverted MgO-doped congruent LiNbO3 crystal. Appl. Phys. Lett. 93(22), 222902 (2008). https://doi.org/10.1063/1.3042100

    Article  ADS  Google Scholar 

  18. D.J. Paul, The progress towards terahertz quantum cascade lasers on silicon substrates. Laser & Photonics Reviews. 4(5), 610–632 (2010)

    Google Scholar 

  19. R.V. Schmidt, I.P. Kaminow, Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett. 25(8), 458–460 (1974). https://doi.org/10.1063/1.1655547

    Article  ADS  Google Scholar 

  20. G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Opt. Lett. 22(24), 1834–1836 (1997). https://doi.org/10.1364/OL.22.001834

    Article  ADS  Google Scholar 

  21. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, Domain reversal and nonstoichiometry in lithium tantalite. J. Appl. Phys. 90(6), 2949–2963 (2001). https://doi.org/10.1063/1.1389525

    Article  ADS  Google Scholar 

  22. R. Chakraborty, J.C. Biswas, S.K. Lahiri, Fabrication and characterization of ridge structures in LiNbO3 for optical components. Opt. Eng. 43(8), 1923–1926 (2004). https://doi.org/10.1117/1.1758270

    Article  ADS  Google Scholar 

  23. G.M. Birnbaumer, P.A. Lieberzeit, L. Richter, R. Schirhag, M. Milnera, F.L. Dickert, A. Bailey, P. Ertl, Detection of viruses with molecularly imprinted polymers integrated on a microuidic biochip using contact-less dielectric microsensors. Lab Chip 9(24), 3549–3556 (2009). https://doi.org/10.1039/B914738A

    Article  Google Scholar 

  24. Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Functionalized nano interdigitated electrodes arrays on polymer with integrated microuidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators, A 136(2), 518–526 (2007). https://doi.org/10.1016/j.sna.2006.12.006

    Article  Google Scholar 

  25. N. Demierre, T. Braschler, P. Linderholm, U. Seger, H.V. Lintel, P. Renaud, Characterization and optimization of liquid electrodes for lateral Dielectrophoresis. Lab Chip 7(3), 355–365 (2007). https://doi.org/10.1039/B612866A

    Article  Google Scholar 

  26. D.F. Chen, H. Du, W.H. Li, Bioparticle separation and manipulation using dielectrophoresis. Sens. Actuators, A 133(2), 329–334 (2007). https://doi.org/10.1016/j.sna.2006.06.029

    Article  Google Scholar 

  27. H. Murata, Y. Okamura, High-speed signal processing utilizing polarization-reversed electro-optic devices. IEEE J. Lightwave Technol. 32(20), 3403–3410 (2014). https://doi.org/10.1109/JLT.2014.2319454

    Article  ADS  Google Scholar 

  28. D. Sando, E. Jaatinen, Optical data encryption using time-dependent dynamics of refractive index changes in LiNbO3. Opt. Exp. 21(17), 19510–19517 (2013). https://doi.org/10.1364/OE.21.019510

    Article  Google Scholar 

  29. A. Garzarella, S.B. Qadri, T.J. Wieting, D.H. Wu, R.J. Hinton, Dielectrically induced sensitivity enhancements in electro-optic field sensors. Opt. Lett. 32(8), 964–966 (2007). https://doi.org/10.1364/OL.32.000964

    Article  ADS  Google Scholar 

  30. K. Liu, H.S. Kang, T.K. Kim, X.C. Zhang, Study of ZnCdTe crystals as terahertz wave emitters and detectors. Appl. Phys. Lett. 81(22), 4115–4117 (2002). https://doi.org/10.1063/1.1524696

    Article  ADS  Google Scholar 

  31. M. Gillick, I.D. Robertson, J.S. Joshi, Direct analytical solution for the electric field distribution at the conductor surfaces of coplanar waveguides. IEEE Trans. Microwave Theory Tech. 41(1), 129–135 (1993). https://doi.org/10.1109/22.210239

    Article  ADS  Google Scholar 

  32. E. Carlsson, S. Gevorgian, Conformal map** of the field and charge distributions in multilayered substrate CPW’s. IEEE Trans. Microwave Theory Tech. 47(8), 1544–1552 (1999). https://doi.org/10.1109/22.780407

    Article  ADS  Google Scholar 

  33. H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, A. Ramos, The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J. Phys. D: Appl. Phys. 34(10), 1553–1561 (2001). https://doi.org/10.1088/0022-3727/34/10/316

    Article  ADS  Google Scholar 

  34. X. Wang, X.B. Wang, F.F. Becker, P.R.C. Gascoyne, A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green’s theorem. J. Phys. D: Appl. Phys. 29(6), 1649–1660 (1996). https://doi.org/10.1088/0022-3727/29/6/035

    Article  ADS  Google Scholar 

  35. S. Corović, M. Pavlin, D. Miklavčič, Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. BioMed Eng Online 6, 37 (2007). https://doi.org/10.1186/1475-925X-6-37

    Article  Google Scholar 

  36. J.M. Bueno-Barrachina, C.S. Cañas-Peñuelas, S. Catalan-Izquierdo, F. Cavallé-Sesé, Capacitance evaluation on perpendicular plate capacitors by means of finite element analysis. in Intl Conf on Renewable Energies and Power Quality (ICREPQ’09). (Valencia, Spain, 2009), pp. 617–621. https://doi.org/10.24084/repqj07.452

  37. Y. Zuo, M. Mony, B. Bahamin, E. Grondin, V. Aimez, D.V. Plant, Bulk electro-optic deflector-based switches. Appl. Opt. 46(16), 3323–3331 (2007). https://doi.org/10.1364/AO.46.003323

    Article  ADS  Google Scholar 

  38. P.E. Shames, P.C. Sun, Y. Fainman, Modeling of scattering and depolarizing electro-optic devices. II. Device simulation. Appl. Opt. 37(17), 3726–3734 (1998). https://doi.org/10.1364/AO.37.003726

    Article  Google Scholar 

  39. S. Sen, S. Mukhopadhyay, A noble technique of using a specially cut LiNbO3 for achieving a greater amount phase difference between the components of light rays. Optik 124(11), 1011–1013 (2013). https://doi.org/10.1016/j.ijleo.2013.01.021

    Article  ADS  Google Scholar 

  40. A. Garzarella, D.H. Wu, Optimal crystal geometry and orientation in electric field sensing using electro-optic sensors. Opt. Lett. 37(11), 2124–2126 (2012). https://doi.org/10.1364/OL.37.002124

    Article  ADS  Google Scholar 

  41. R. Schinzinger, P.A.A. Laura, Conformal map**: Methods and applications (Dover Publications Inc., New York, 2003)

    MATH  Google Scholar 

  42. T. Sun, N.G. Green, H. Morgan, Electric field analysis using Schwarz-Christoffel Map**. J. Phys: Conf. Ser. 142, 012029 (2008). https://doi.org/10.1088/1742-6596/142/1/012029

    Article  Google Scholar 

  43. Markovic´ M, Jufer M, Perriard Y, Analyzing an electromechanical actuator by Schwarz-Christoffel map**. IEEE Trans. Magnetics 40(4), 1858–1863 (2004). https://doi.org/10.1109/TMAG.2004.828920

    Article  ADS  Google Scholar 

  44. S.O.P. Blume, R. Ben-Mrad, P.E. Sullivan, Modelling the capacitance of multi-layer conductor facing interdigitated electrode structures. Sens. Actuators, B Chem. 213, 423–433 (2015). https://doi.org/10.1016/j.snb.2015.02.088

    Article  Google Scholar 

  45. Y. **ang, The electrostatic capacitance of an inclined plate capacitor. J. Electrost 64(1), 29–34 (2006). https://doi.org/10.1016/j.elstat.2005.05.002

    Article  Google Scholar 

  46. B.R. Patla, Small angle approximation for non parallel plate capacitors with applications in experimental gravitation. Cornell University Library (2013). https://doi.org/10.48550/ar**v.1208.2984

    Article  Google Scholar 

  47. R. Das, S. Ghosh, R. Chakraborty, Analysis of electric field for inclined electrodes and tunable differential polarization phase in a trapezoidal LiNbO3 crystal. Eur. Phys. J. Appl. Phys. 72(3), 30501(2014). https://doi.org/10.1051/epjap/2015150296

  48. P. Linderholm, U. Seger, P. Renaud, Analytical expression for electric field between two facing strip electrodes in microchannel. Electron. Lett. 42(3), 145–147 (2006). https://doi.org/10.1049/el:20063326

    Article  ADS  Google Scholar 

  49. T. Sun, N.G. Green, S. Gawad, H. Morgan, Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol. 1(5), 69–79 (2007). https://doi.org/10.1049/iet-nbt:20070019

    Article  Google Scholar 

  50. D. Beasley, D.R. Bull, R.R. Martin, An overview of genetic algorithm, Part 1. Fundamentals. Univ. Comput. 15(2), 58–69 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, R., Chakraborty, R. (2023). Optical Polarization Phase Modulation with Lithium Niobate. In: Saha, A., Biswas, A., Ghosh, K., Mukhopadhyay, N. (eds) Optical to Terahertz Engineering. Progress in Optical Science and Photonics, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-99-0228-6_6

Download citation

Publish with us

Policies and ethics

Navigation