Secure Implementation of Distributed Control for Multiple Spacecraft Against Malicious Eavesdrop** Attacks

  • Conference paper
  • First Online:
Proceedings of 2023 7th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1204))

Included in the following conference series:

Abstract

This paper addresses the secure distributed control problem of spacecraft formation flying systems, which are susceptible to malicious eavesdrop** attacks from hostile adversaries. A novel secure implementation framework of distributed control is proposed. Firstly, the uniform quantizer is decomposed, and an encoder is developed to convert system states and intermediate control parameters into integers. Then, the sensitive system states are pre-encrypted using the Paillier cryptosystem. Subsequently, an encrypted distributed control scheme is presented, incorporating the encoded and encrypted data. Notably, all data transmitted via the communication network are encrypted. Moreover, the encrypted distributed control law is directly evaluated using the received information from neighboring spacecraft, which maintains data security even when the controller devices are wiretapped. Following this secure implementation framework, the proposed encrypted distributed control law protects the data security of each spacecraft, while enabling effective control coordination. Simulation results verify the effectiveness of the proposed secure implementation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 239.67
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandyopadhyay, S., Subramanian, G.P., Foust, R., et al.: A review of impending small satellite formation flying missions. In: 53rd AIAA Aerospace Sciences Meeting, p. 1623 (2015). https://doi.org/10.2514/6.2015-1623

  2. Di Mauro, G., Lawn, M., Bevilacqua, R.: Survey on guidance navigation and control requirements for spacecraft formation-flying missions. J. Guid. Control. Dyn. 41(3), 581–602 (2018). https://doi.org/10.2514/1.G002868

    Article  Google Scholar 

  3. Liu, G.P., Zhang, S.: A survey on formation control of small satellites. Proc. IEEE 106(3), 440–457 (2018). https://doi.org/10.1109/JPROC.2018.2794879

    Article  Google Scholar 

  4. Krieger, G., Moreira, A., Fiedler, H., et al.: TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 45(11), 3317–3341 (2007). https://doi.org/10.1109/TGRS.2007.900693

    Article  Google Scholar 

  5. Moreira, A., Prats-Iraola, P., Younis, M., et al.: A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Magaz. 1(1), 6–43 (2013). https://doi.org/10.1109/MGRS.2013.2248301

    Article  Google Scholar 

  6. Kumar, K.D., Bang, H.C., Tahk, M.J.: Satellite formation flying using along-track thrust. Acta Astronaut. 61(7–8), 553–564 (2007). https://doi.org/10.1016/j.actaastro.2007.01.069

    Article  Google Scholar 

  7. Xu, M., Liang, Y.: Formation flying on elliptic orbits by Hamiltonian structure-preserving control. J. Guid. Control. Dyn. 41(1), 294–300 (2018). https://doi.org/10.2514/1.G002141

    Article  Google Scholar 

  8. Zhang, B.Q., Song, S.M.: Decentralized coordinated control for multiple spacecraft formation maneuvers. Acta Astronaut. 74, 79–97 (2012). https://doi.org/10.1016/j.actaastro.2011.12.017

    Article  Google Scholar 

  9. Hu, Q., Shi, Y.: Event-based coordinated control of spacecraft formation flying under limited communication. Nonl. Dyn. 99(3), 2139–2159 (2020). https://doi.org/10.1007/s11071-019-05396-6

    Article  Google Scholar 

  10. Ran, D., Chen, X., Misra, A.K., et al.: Relative position coordinated control for spacecraft formation flying with communication delays. Acta Astronaut. 137, 302–311 (2017). https://doi.org/10.1016/j.actaastro.2017.04.011

    Article  Google Scholar 

  11. Housen-Couriel, D.: Cybersecurity threats to satellite communications: towards a typology of state actor responses. Acta Astronaut. 128, 409–415 (2016). https://doi.org/10.1016/j.actaastro.2016.07.041

    Article  Google Scholar 

  12. Guo, W., Xu, J., Pei, Y., et al.: A distributed collaborative entrance defense framework against DDoS attacks on satellite internet. IEEE Internet Things J. 9(17), 15497–15510 (2022). https://doi.org/10.1109/JIOT.2022.3176121

    Article  Google Scholar 

  13. Tahoun, A.H., Arafa, M.: Cooperative control for cyber-physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks. ISA Trans. 110, 1–14 (2021). https://doi.org/10.1016/j.isatra.2020.10.002

    Article  Google Scholar 

  14. Kazemy, A., Lam, J., Chang, Z.: Adaptive event-triggered mechanism for networked control systems under deception attacks with uncertain occurring probability. Int. J. Syst. Sci. 52(7), 1426–1439 (2021). https://doi.org/10.1080/00207721.2020.1858205

    Article  MathSciNet  Google Scholar 

  15. Yang, Y., Li, Y., Yue, D., et al.: Distributed secure consensus control with event-triggering for multiagent systems under DoS attacks. IEEE Trans. Cybernet. 51(6), 2916–2928 (2020). https://doi.org/10.1109/TCYB.2020.2979342

    Article  MathSciNet  Google Scholar 

  16. Wen, G., Wang, P., Lv, Y., et al.: Secure consensus of multi-agent systems under denial-of-service attacks. Asian J. Control 25(2), 695–709 (2023). https://doi.org/10.1002/asjc.2953

    Article  MathSciNet  Google Scholar 

  17. Feng, Z., Hu, G.: Distributed secure average consensus for linear multi-agent systems under DoS attacks. In: American Control Conference (ACC), pp. 2261–2266. IEEE (2017). https://doi.org/10.23919/ACC.2017.7963289

  18. **ang, B., Liu, X., Chen, Y.: A secure event-based quantized networked control system. Trans. Inst. Meas. Control. 45(7), 1382–1394 (2023). https://doi.org/10.1177/01423312221134

    Article  Google Scholar 

  19. Kogiso, K., Fujita, T.: Cyber-security enhancement of networked control systems using homomorphic encryption. In: 54th IEEE Conference on Decision and Control (CDC), pp. 6836–6843. IEEE (2015). https://doi.org/10.1109/CDC.2015.7403296

  20. Kishida, M.: Encrypted average consensus with quantized control law. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 5850–5856. IEEE (2018). https://doi.org/10.1109/CDC.2018.8619855

  21. Darup, M.S., Redder, A., Quevedo, D.E.: Encrypted cooperative control based on structured feedback. IEEE Control Syst. Lett. 3(1), 37–42 (2018). https://doi.org/10.1109/LCSYS.2018.2851152

    Article  MathSciNet  Google Scholar 

  22. Yang, Z., Yu, L., Liu, Y., et al.: Event-triggered privacy-preserving bipartite consensus for multi-agent systems based on encryption. Neurocomputing 503, 162–172 (2022). https://doi.org/10.1016/j.neucom.2022.06.074

    Article  Google Scholar 

  23. Farokhi, F., Shames, I., Batterham, N.: Secure and private control using semi-homomorphic encryption. Control. Eng. Pract. 67, 13–20 (2017). https://doi.org/10.1016/j.conengprac.2017.07.004

    Article  Google Scholar 

  24. Du, H., Li, S.: Attitude synchronization for flexible spacecraft with communication delays. IEEE Trans. Autom. Control 61(11), 3625–3630 (2016). https://doi.org/10.1109/TAC.2016.2525933

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R D Program of China under Grants 2021YFC2202600 and 2021YFC2202603, in part by the National Natural Science Foundation of China under Grants 62227812, 61960206011, and 62103027, and in part by the Hangzhou Qianjiang Distinguished Expert program support, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aodong Shao .

Editor information

Editors and Affiliations

Appendix

Appendix

Choose the following Lyapunov function candidate

$$\begin{aligned} V=\frac{1}{2}\sum _{i}^{n}\boldsymbol{s}_i^\top \boldsymbol{M}_i \boldsymbol{s}_i \end{aligned}$$
(13)

where \(\boldsymbol{M}_i=\textrm{diag}\{m_i,m_i,m_i\}\in \mathbb {R}^3\)

$$\begin{aligned} \begin{aligned} \dot{V}&=\frac{1}{2}\sum _{i}^{n}\boldsymbol{s}_i^\top \dot{\boldsymbol{M}}_i\boldsymbol{s}_i+\sum _{i}^{n}\boldsymbol{s}_i^\top m_i\dot{\boldsymbol{s}}_i\\ &=\frac{1}{2}\sum _{i}^{n}\boldsymbol{s}_i^\top (\dot{\boldsymbol{M}}_i-2\boldsymbol{C}_i)\boldsymbol{s}_i+\sum _{i}^{n}\boldsymbol{s}_i^\top (m_i\ddot{\boldsymbol{\rho }}_i+m_i\dot{\boldsymbol{q}}_{ri}+\boldsymbol{C}_i\dot{\boldsymbol{\rho }}_i+\boldsymbol{C}_i\boldsymbol{q}_{ri})\\ &=\sum _{i}^{n}\boldsymbol{s}_i^\top (-\boldsymbol{f}_i+\boldsymbol{u}_i+m_i\dot{\boldsymbol{q}}_{ri}+\boldsymbol{C}_i\boldsymbol{q}_{ri}) \end{aligned} \end{aligned}$$
(14)

Substituting the distributed control law (11) in to (14), results in

$$\begin{aligned} \dot{V}=-\sum _{i}^{n}\boldsymbol{s}_i^\top K_i\boldsymbol{s}_i\le -\frac{2K_\textrm{min}}{M_\textrm{max}} V \end{aligned}$$
(15)

where \(K_\textrm{min}\) denotes the minimum of the control gain sequence \(K_i, (i=1,\cdots ,n)\) and \(M_\textrm{max}\) is the mass maximum of the formation spacecraft. Clearly, it is from (15) inferred that \(\boldsymbol{s}_i\) converges to zero exponentially. Recalling the definition of \(\boldsymbol{s}_i\) in (10), it is concluded that \(\dot{\boldsymbol{\rho }}_i\rightarrow 0\) and \(\boldsymbol{\rho }_i-\boldsymbol{\rho }_j\rightarrow 0\), as \(t\rightarrow \infty \). This completes the proof of Theorem 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Hu, Q., Zhao, D., Lv, M., Shao, X. (2024). Secure Implementation of Distributed Control for Multiple Spacecraft Against Malicious Eavesdrop** Attacks. In: Jiang, GP., Wang, M., Ren, Z. (eds) Proceedings of 2023 7th Chinese Conference on Swarm Intelligence and Cooperative Control. CCSICC 2023. Lecture Notes in Electrical Engineering, vol 1204. Springer, Singapore. https://doi.org/10.1007/978-981-97-3340-8_5

Download citation

Publish with us

Policies and ethics

Navigation