Phase Transition at Small-Medium Scales Vicsek Model Based on Eigen Microstate Method

  • Conference paper
  • First Online:
Proceedings of 2023 7th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1205))

Included in the following conference series:

  • 42 Accesses

Abstract

Vicsek Model is widely recognized as one of the classic models for studying flocking problems. The presence of discontinuous phase transitions in the Vicsek Model under vector noise has been widely recognized, while there is no accepted consensus on whether the Vicsek Model under scalar noise has discontinuous phase transitions until now. The Eigen Microstate method has been applied to study complex systems such as natural climate, and it is suitable for studying both equilibrium systems and non equilibrium systems. The method of Eigen Microstate is used in this article to study the phase transition of the Vicsek model with scalar noise at small and medium-sized scales, and concludes that the standard Vicsek model has discontinuous phase transitions. And quantitative analysis was conducted to calculate the critical point of phase transition in the standard Vicsek model, and the relationship between the critical point and cluster density was summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butt, T., Mufti, T., Humayun, A., et al.: Myosin motors drive long range alignment of actin filaments. J. Biol. Chem. 285(7), 4964–4974 (2010). https://doi.org/10.1074/jbc.M109.044792

    Article  Google Scholar 

  2. Herbert-Read, J.E., Perna, A., et al.: Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. 108(46), 18726–18731 (2011). https://doi.org/10.1073/pnas.1109355108

    Article  Google Scholar 

  3. Becco, C., Vandewalle, N., Delcourt, J., et al.: Experimental evidences of a structural and dynamical transition in fish school. Physica A: Stat. Mech. Appl. 367, 487–493 (2006). https://doi.org/10.1016/j.physa.2005.11.041

  4. Ballerini, M., Calbibbo, N., Candeleir, R., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Nat. Acad. Sci. USA 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105

    Article  Google Scholar 

  5. Nagy, M., Ákos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010). https://doi.org/10.1038/nature08891

    Article  Google Scholar 

  6. Dalmao, F., Mordecki, E.: Cucker-Smale flocking under hierarchical leadership and random interactions. J. SLAM J. Appl. Math. 71(4), 1307–1316 (2011). https://doi.org/10.1137/100785910

    Article  MathSciNet  Google Scholar 

  7. Jia, Y., Vicsek, T.: Modelling hierarchical flocking. New J. Phys. 21(9), 093048 (2019). https://doi.org/10.1088/1367-2630/ab428e

    Article  MathSciNet  Google Scholar 

  8. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

    Article  Google Scholar 

  9. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995). https://doi.org/10.1103/PhysRevLett.75.1226

    Article  MathSciNet  Google Scholar 

  10. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(2), 852–862 (2007). https://doi.org/10.1109/TAC.2007.895842

    Article  MathSciNet  Google Scholar 

  11. Barbaro, A.B.T., Canizo, J.A., Carrillo, J.A., Degond, P.: Phase transitions in a kinetic flocking model of Cucker-Smale type. Multi-scale Model. Simul. 14(3), 1063–1088 (2016). https://doi.org/10.1137/15m1043637

    Article  MathSciNet  Google Scholar 

  12. Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112(1–2), 135–153 (2003). https://doi.org/10.1023/A:1023675519930

    Article  Google Scholar 

  13. Barbaro, A.B.T., Degond, P.: Phase transition and diffusion among socially interacting self-propelled agents. Discret. Continuous Dyn. Syst.-Ser. B 19(5), 1249–1278 (2014). https://doi.org/10.1371/journal.pone.0027950

    Article  MathSciNet  Google Scholar 

  14. Pattanayak, S., Mishra, S.: Collection of polar self-propelled particles with a modified alignment interaction. J. Phys. Commun. 2(4), 045007 (2018). https://doi.org/10.1088/2399-6528/aab8cc

    Article  Google Scholar 

  15. Escaff, D., Delpiano, R.: Flocking transition within the framework of Kuramoto paradigm for synchronization: clustering and the role of the range of interaction. J. Chaos 30(8), 083137 (2020). https://doi.org/10.1063/5.0006218

    Article  MathSciNet  Google Scholar 

  16. Grégoire, G., Chaté, H., et al.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 25702 (2004). https://doi.org/10.1103/physrevlett.92.025702

    Article  Google Scholar 

  17. Nagy, M., Duruka, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Phys. A: Stat. Mech. Appl. 373, 445–454 (2007). https://doi.org/10.1016/j.physa.2006.05.035

    Article  Google Scholar 

  18. Baglietto, G., Albano, E.V.: Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles. J. Phys Rev E. 80(5 pt 1), 050103 (2009). https://doi.org/10.1103/PhysRevE.80.050103

    Article  Google Scholar 

  19. Binder, K.: Finite size scaling analysis of Ising model block distribution functions. J. Zeitschrift furPhysik B Condensed Matter. 43(2), 119–140 (1981). https://doi.org/10.1007/BF01293604

    Article  Google Scholar 

  20. Sun, Y., Hu, G., Zhang, Y., et al.: Eigen microstates and their evolutions in complex systems. Commun. Theor. Phys. 73(6), 065603 (2021). https://doi.org/10.1088/1572-9494/abf127

    Article  MathSciNet  Google Scholar 

  21. Li, X., Xue, T., Sun, Y., et al.: Discontinuous and continuous transitions of collective behaviors in living systems. China Phys. B 30(12), 128703 (2021). https://doi.org/10.1088/1674-1056/ac3c3f

    Article  Google Scholar 

  22. Hu, G.K., Liu, T., Liu, M.X., et al.: Condensation of eigen microstate in statistical ensemble and phase transition. Sci. China (Phys. Mech. Astron.) 62(09), 45–52 (2019). https://doi.org/10.1007/s11433-018-9353-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongnan Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, Y., Han, J., Li, Q. (2024). Phase Transition at Small-Medium Scales Vicsek Model Based on Eigen Microstate Method. In: Wang, Q., Dong, X., Song, P. (eds) Proceedings of 2023 7th Chinese Conference on Swarm Intelligence and Cooperative Control. CCSICC 2023. Lecture Notes in Electrical Engineering, vol 1205. Springer, Singapore. https://doi.org/10.1007/978-981-97-3328-6_2

Download citation

Publish with us

Policies and ethics

Navigation