Multi-objective Optimization

  • Chapter
  • First Online:
Intelligent Optimization

Abstract

In recent decades, evolutionary multi-objective optimization has attracted a growing interest due to the fact that many real-world applications are multi-objective optimization problems (MOPs). This chapter introduces basic concepts regarding multi-objective optimization, then several popular multi-objective optimization evolutionary algorithms (MOEAs) are described, and performance measures and visualization of Pareto front are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 64.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, G., Bloebaum, C., Lewis, K.: Intuitive design selection using visualized n-dimensional Pareto frontier. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1813–1826. American Institute of Aeronautics and Astronautics, Reston (2005)

    Google Scholar 

  2. Ang, K.H., Chong, G., Li, Y.: Visualization technique for analyzing non-dominated set comparison. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, pp. 36–40. Nanyang Technical University, Orchid Country Club, Singapore (2002)

    Google Scholar 

  3. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  4. Blasco, X., Herrero, J.M., Sanchis, J., Mart\(\acute {i}\)nez, M.: A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Inf. Sci. 178(20), 3908–3924 (2008)

    Google Scholar 

  5. Chiu, P.W., Bloebaum, C.: Hyper-radial visualization (HRV) for decision-making in multi-objective optimization. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, p. 908. American Institute of Aeronautics and Astronautics, Reston (2008)

    Google Scholar 

  6. Coello, C.A.C., Sierra, M.R.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Mexican International Conference on Artificial Intelligence, pp. 688–697. Springer, Heidelberg (2004)

    Google Scholar 

  7. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: International Conference on Parallel Problem Solving from Nature, pp. 839–848. Springer, Berlin (2000)

    Google Scholar 

  8. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  11. Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of well-spread Pareto-optimal solutions. In: Evolutionary Multi-criterion Optimization, pp. 222–236. Springer, Berlin (2003)

    Google Scholar 

  12. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 62–76. Springer, Berlin (2005)

    Google Scholar 

  13. Gu, F., Liu, H.L., Tan, K.C.: A multiobjective evolutionary algorithm using dynamic weight design method. Int. J. Innov. Comput. Inf. Control 8(5(B)), 3677–3688 (2012)

    Google Scholar 

  14. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA visual and analytic data mining. In: IEEE Conference on Visualization, pp. 437–441. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  15. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 280–295. Springer, Berlin (2005)

    Google Scholar 

  16. Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: 3D-RadVis: visualization of Pareto front in many-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 736–745. IEEE, Vancouver (2016)

    Google Scholar 

  17. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, New York (2009)

    Book  Google Scholar 

  18. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  19. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  20. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi objective algorithms. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 361–375. Springer, Berlin (2007)

    Google Scholar 

  21. Scott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Massachusetts Institute of Technology, Cambridge (1995)

    Google Scholar 

  22. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a Pareto front. In: Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 221–228. Stanford University Bookstore, California (1998)

    Google Scholar 

  23. Yang, S., Li, M., Liu, X., Zheng, J.: A grid based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

    Article  Google Scholar 

  24. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  25. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  26. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin (2004)

    Google Scholar 

  27. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Technical report, Eidgenössische Technische Hochschule Zürich, Zurich (2001)

    Google Scholar 

  28. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: International Conference on Parallel Problem Solving from Nature, pp. 292–301. Springer, Berlin (1998)

    Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 China University of Geosciences Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C., Han, S., Zeng, S., Yang, S. (2024). Multi-objective Optimization. In: Intelligent Optimization. Springer, Singapore. https://doi.org/10.1007/978-981-97-3286-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3286-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3285-2

  • Online ISBN: 978-981-97-3286-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation