Not Optimal but Efficient: A Distinguisher Based on the Kruskal-Wallis Test

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2023 (ICISC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14561))

Included in the following conference series:

  • 139 Accesses

Abstract

Research about the theoretical properties of side channel distinguishers revealed the rules by which to maximise the probability of first order success (“optimal distinguishers”) under different assumptions about the leakage model and noise distribution . Simultaneously, research into bounding first order success (as a function of the number of observations) has revealed universal bounds, which suggest that (even optimal) distinguishers are not able to reach theoretically possible success rates. Is this gap a proof artefact (aka the bounds are not tight) or does a distinguisher exist that is more trace efficient than the “optimal” one? We show that in the context of an unknown (and not linear) leakage model there is indeed a distinguisher that outperforms the “optimal” distinguisher in terms of trace efficiency: it is based on the Kruskal-Wallis test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For readability we do not make input and key dependence explicit in the leakage L.

  2. 2.

    Side-channel attacks are also possible by exploiting the output with \(f_{{k^{*}}}^{-1}\).

  3. 3.

    It is worth noting that there exists no known optimal multivariate implementation for the above mentioned side-channel distinguishers [BGP+11, WOM11], because the outcomes are highly sensitive to various factors, including leakage models, noise levels and methods for pre-processing, etc.

  4. 4.

    We refrain to include more details at this point in order to maintain the anonymity of the submission.

  5. 5.

    Spearman and DoM are excluded from Fig. 4c as they failed against the masked implementation.

References

  1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative evaluation of rank correlation based DPA on an AES prototype chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_24

    Chapter  Google Scholar 

  3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)

    Article  MathSciNet  Google Scholar 

  4. de Chérisey, E., Guilley, S., Heuser, A., Rioul, O.: On the optimality and practicability of mutual information analysis in some scenarios. Cryptogr. Commun. 10(1), 101–121 (2018)

    Article  MathSciNet  Google Scholar 

  5. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most successful mutual information and success rate in side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 49–79 (2019)

    Article  Google Scholar 

  6. Fan, C., Zhang, D., Zhang, C.-H.: On sample size of the kruskal-wallis test with application to a mouse peritoneal cavity study. Biometrics 67(1), 213–24 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  8. Gao, S., Marshall, B., Page, D., Oswald, E.: Share-slicing: Friend or foe? IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 152–174 (2020)

    Google Scholar 

  9. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_4

    Chapter  Google Scholar 

  10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  11. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  Google Scholar 

  12. Levi, I., Bellizia, D., Standaert, F.-X.: Reducing a masked implementation’s effective security order with setup manipulations and an explanation based on externally-amplified couplings. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 293–317 (2019)

    Article  Google Scholar 

  13. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

    Article  Google Scholar 

  14. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

    Article  MathSciNet  Google Scholar 

  15. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  16. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Generic DPA attacks: curse or blessing? In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 98–111. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_8

    Chapter  Google Scholar 

  17. Whitnall, C., Oswald, E., Mather, L.: An exploration of the kolmogorov-smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8_15

    Chapter  Google Scholar 

  18. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA...and the magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_10

    Chapter  Google Scholar 

Download references

Acknowledgment

Elisabeth Oswald and Yan Yan have been supported in part by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yan .

Editor information

Editors and Affiliations

Appendices

A The KW Statistic

Let \(X_{ij}\) where \(i = 1, \ldots , t\), \(j = 1, \ldots , n_i\) be independent random samples collected from a population having t groups and the sample size for group i is \(n_i\). Let us assume that the random variables \(X_{ij}\) have distribution \(F_i\). The generic null and alternative hypotheses of KW test are

$$\begin{aligned} H_0 &: F_1 = F_2 = \ldots = F_t \\ \nonumber H_a &: F_i \ne F_j \quad \text {for some} \quad i, j \quad \text {s.t} \quad i \ne j. \end{aligned}$$
(6)

The observations are combined into one sample of size N where

$$ N = \sum _{i=1}^{t}n_i $$

This combined sample is ranked. Suppose, \(R_{i,j}\) is the ranking of the j-th sample from the group i, \(\bar{R}_{i}\) the average rank of all samples from group i:

$$ \bar{R}_{i} = {n_i}^{-1}\sum _{j = 1}^{n_i}{R_{i,j}} $$

and \(\bar{R} = (N+1)/2\) the average of all \(R_{i,j}\).

The KW test statistic \(H_{KW}\) is defined [KW52] as:

$$\begin{aligned} H_{KW} = (N-1)\frac{\sum _{i = 1}^{t}{n_i(\bar{R}_i - \bar{R})^2}}{\sum _{i = 1}^{t}{\sum _{j=1}^{n_i}{(R_{i,j} - \bar{R})^2}}} \end{aligned}$$
(7)

In Eq. (27) the denominator \(\sum _{i = 1}^{t}{n_i(\bar{R}_i - \bar{R})^2}\) describes the variation of ranks between groups, and the numerator \(\sum _{i = 1}^{t}{\sum _{j=1}^{n_i}{(R_{i,j} - \bar{R})^2}}\) describes the variation of ranks in the combined sample. Intuitively, if \(X_{ij}\) are all sampled from the same distribution, then all \(\bar{R_i}\) are expected to be close to \(\bar{R}\) and thus the statistics \(H_{KW}\) should be smaller, and vice versa. Large values of the test statistic results in rejecting the null hypothesis of the KW test.

B Further Experimental Results

(Se Fig. 5).

Fig. 5.
figure 5

Attacking the AES SubBytes target, drop** 4 most significant bits

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Y., Oswald, E., Roy, A. (2024). Not Optimal but Efficient: A Distinguisher Based on the Kruskal-Wallis Test. In: Seo, H., Kim, S. (eds) Information Security and Cryptology – ICISC 2023. ICISC 2023. Lecture Notes in Computer Science, vol 14561. Springer, Singapore. https://doi.org/10.1007/978-981-97-1235-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1235-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1234-2

  • Online ISBN: 978-981-97-1235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation