Data-Driven Distributionally Robust Scheduling of Community Comprehensive Energy Systems Considering Integrated Load Control

  • Chapter
  • First Online:
Flexible Load Control for Enhancing Renewable Power System Operation

Part of the book series: Power Systems ((POWSYS))

  • 69 Accesses

Abstract

Recently, the depletion of fossil fuels and escalating environmental pollution have emerged as primary challenges confronting human civilization. The advent and progression of renewable generations (RGs) present a viable solution to such issues (Potrč et al. in Renew Sustain Energy Rev 146:111186, 2021). A prominent illustration of this solution and an integral contributor to the evolution of the energy internet is the Community Integrated Energy System (CIES) (Li et al. in J Clean Prod 378:134540, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potrč S, Čuček L, Martin M, Kravanja Z (2021) Sustainable renewable energy supply networks optimization—the gradual transition to a renewable energy system within the European Union by 2050. Renew Sustain Energy Rev 146:111186

    Article  Google Scholar 

  2. Li Y, Bu F, Gao J, Li G (2022) Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading. J Clean Prod 378:134540

    Article  Google Scholar 

  3. Lv C, Hao Yu, Li P, Wang C, Xu X, Li S, Wu J (2019) Model predictive control based robust scheduling of community integrated energy system with operational flexibility. Appl Energy 243:250–265

    Article  Google Scholar 

  4. Abu-Rayash A, Dincer I (2020) Development of an integrated energy system for smart communities. Energy 202:117683

    Google Scholar 

  5. Shi Z, Liang H, Huang S, Dinavahi V (2019) Distributionally robust chance-constrained energy management for islanded microgrids. IEEE Trans Smart Grid 10(2):2234–2244

    Article  Google Scholar 

  6. Lorca Á, Sun XA (2017) Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Trans Power Syst 32(3):1678–1688

    Article  Google Scholar 

  7. Zhou Y, Wei Z, Sun G, Cheung KW, Zang H, Chen S (2018) A robust optimization approach for integrated community energy system in energy and ancillary service markets. Energy 148:1–15

    Article  Google Scholar 

  8. Zhong J, Li Y, Cao Y, Tan Y, Peng Y, Zeng Z, Cao L (2020) Stochastic optimization of integrated energy system considering network dynamic characteristics and psychological preference. J Clean Prod 275:122992

    Article  Google Scholar 

  9. Mei F, Zhang J, Lu J, Lu J, Jiang Y, Gu J, Yu K, Gan L (2021) Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations. Energy 219:119629

    Article  Google Scholar 

  10. Li Y, Zou Y, Tan Y (2018) Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system. IEEE Trans Sustain Energy 9(1):273–283

    Article  Google Scholar 

  11. Liu F, Bie Z, Wang X (2019) Day-ahead dispatch of integrated electricity and natural gas system considering reserve scheduling and renewable uncertainties. IEEE Trans Sustain Energy 10(2):646–658

    Article  Google Scholar 

  12. Chen Y, Guo Q, Sun H, Li Z, Wu W, Li Z (2018) A distributionally robust optimization model for unit commitment based on Kullback-Leibler divergence. IEEE Trans Power Syst 33(5):5147–5160

    Article  Google Scholar 

  13. Zare A, Chung CY, Zhan J, Faried SO (2018) A distributionally robust chance-constrained MILP model for multistage distribution system planning with uncertain renewables and loads. IEEE Trans Power Syst 33(5):5248–5262

    Article  Google Scholar 

  14. Guo Y, Baker K, Dall’Anese E, Hu Z, Summers TH (2019) Data-based distributionally robust stochastic optimal power flow—Part I: methodologies. IEEE Trans Power Syst 34(2):1483–1492

    Article  Google Scholar 

  15. Lu X, Chan KW, **a S, Zhou B, Luo X (2019) Security-constrained multiperiod economic dispatch with renewable energy utilizing distributionally robust optimization. IEEE Trans Sustain Energy 10(2):768–779

    Article  Google Scholar 

  16. Li Y, Wang J, Zhao D, Li G, Chen C (2018) A two-stage approach for combined heat and power economic emission dispatch: combining multi-objective optimization with integrated decision making. Energy 162:237–254

    Article  Google Scholar 

  17. Dolatabadi A, Abdeltawab H, Mohamed YA-RI (2023) A novel model-free deep reinforcement learning framework for energy management of a PV integrated energy hub. IEEE Trans Power Syst 38(5):4840–4852

    Article  Google Scholar 

  18. Hafiz F, Awal MA, Queiroz ARD, Husain I (2020) Real-time stochastic optimization of energy storage management using deep learning-based forecasts for residential PV applications. IEEE Trans Ind Appl 56(3):2216–2226

    Article  Google Scholar 

  19. Li Y, Zhang M, Chen C (2022) A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems. Appl Energy 308:118347

    Article  Google Scholar 

  20. Li Y, Li J, Wang Y (2022) Privacy-preserving spatiotemporal scenario generation of renewable energies: a federated deep generative learning approach. IEEE Trans Ind Inf 18(4):2310–2320

    Article  Google Scholar 

  21. Dehghanpour K, Nehrir MH, Sheppard JW, Kelly NC (2018) Agent-based modeling of retail electrical energy markets with demand response. IEEE Trans Smart Grid 9(4):3465–3475

    Article  Google Scholar 

  22. Wang Y, Ma Y, Song F, Ma Y, Qi C, Huang F, **ng J, Zhang F (2020) Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response. Energy 205:118022

    Article  Google Scholar 

  23. Li P, Wang Z, Wang J, Yang W, Guo T, Yin Y (2021) Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response. Energy 225

    Google Scholar 

  24. Li Y, Wang B, Yang Z, Li J, Li G (2022) Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments. IEEE Trans Ind Appl 58(2):2640–2651

    Article  Google Scholar 

  25. Gjorgievski VZ, Markovska N, Abazi A, Duić N (2021) The potential of power-to-heat demand response to improve the flexibility of the energy system: an empirical review. Renew Sustain Energy Rev 138:110489

    Article  Google Scholar 

  26. Li Y, Wang B, Yang Z, Li J, Chen C (2022) Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game. Appl Energy 308:118392

    Article  Google Scholar 

  27. Li Y, Han M, Shahidehpour M, Li J, Long C (2023) Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response. Appl Energy 335:120749

    Article  Google Scholar 

  28. Gulrajani I, Ahmed F, Arjovsky M (2017) Improved training of Wasserstein GANs 1704:00028. ar**v preprint ar**v

    Google Scholar 

  29. Tang R, Dore J, Ma J, Leong PHW (2021) Interpolating high granularity solar generation and load consumption data using super resolution generative adversarial network. Appl Energy 299:117297

    Article  Google Scholar 

  30. Jahangir H, Tayarani H, Gougheri SS, Golkar MA, Ahmadian A, Elkamel A (2021) Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network. IEEE Trans Ind Electron 68(9):8298–8309

    Article  Google Scholar 

  31. Li Y, Han M, Yang Z, Li G (2021) Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: a bi-level approach. IEEE Trans Sustain Energy 12(4):2321–2331

    Article  Google Scholar 

  32. Li Y, Wang C, Li G, Wang J, Zhao D, Chen C (2020) Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Conver Manag 207:112526

    Article  Google Scholar 

  33. Li Y, Yang Z, Li G, Mu Y, Zhao D, Chen C, Shen B (2018) Optimal scheduling of isolated microgrid with an electric vehicle battery swap** station in multi-stakeholder scenarios: a bi-level programming approach via real-time pricing. Appl Energy 232:54–68

    Article  Google Scholar 

  34. Li Y, Feng B, Wang B, Sun S (2022) Joint planning of distributed generations and energy storage in active distribution networks: a Bi-Level programming approach. Energy 245:123226

    Article  Google Scholar 

  35. Kalantar-Neyestanaki M, Cherkaoui R (2021) Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty. IEEE Trans Sustain Energy 12(4):1853–1863

    Article  Google Scholar 

  36. Li Y, Yang Z, Li G, Zhao D, Tian W (2019) Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Trans Ind Electron 66(2):1565–1575

    Article  Google Scholar 

  37. Zhao C, Guan Y (2016) Data-driven stochastic unit commitment for integrating wind generation. IEEE Trans Power Syst 31(4):2587–2596

    Article  Google Scholar 

  38. Li Y (2018) Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system. IEEE Trans Sustain Energy 9(1):273–283

    Article  Google Scholar 

  39. Kong XJ, Liu D, Wu J, Wang C, Shen Y (2020) Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties. Appl Energy 279:115707

    Article  Google Scholar 

  40. Zhang Y, Ai Q, **ao F, Hao R, Lu T (2020) Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network. Int J Electric Power Energy Syst 114:105388

    Article  Google Scholar 

  41. Xu Q, Huang G, Yuan Y (2018) An empirical study on evaluation metrics of generative adversarial networks. ar**v preprint ar**v 1806:07755

    Google Scholar 

  42. Li Y, Wang R, Li Y, Zhang M, Long C (2023) Wind power forecasting considering data privacy protection: a federated deep reinforcement learning approach. Appl Energy 329:120291

    Article  Google Scholar 

  43. Li Y, Wei X, Li Y, Dong Z, Shahidehpour M (2022) Detection of false data injection attacks in smart grid: a secure federated deep learning approach. IEEE Trans Smart Grid 13(6):4862–4872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzheng Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Li, Y., Zeng, Z. (2024). Data-Driven Distributionally Robust Scheduling of Community Comprehensive Energy Systems Considering Integrated Load Control. In: Flexible Load Control for Enhancing Renewable Power System Operation. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-0312-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0312-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0311-1

  • Online ISBN: 978-981-97-0312-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation