Part of the book series: Power Systems ((POWSYS))

  • 84 Accesses

Abstract

Flexible load control refers to the ability to manage and adjust the consumption of electrical loads in response to changing energy supply and demand conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang S, Zhou M, Li G (2021) Applying power margin tracking droop control to flexible operation in multi-terminal DC collector systems of renewable generation. CSEE J Power Energy Syst 7(6):1176–1186

    Google Scholar 

  2. Tindemans SH, Strbac G (2021) Low-complexity decentralized algorithm for aggregate load control of thermostatic loads. IEEE Trans Industr Appl 57(1):987–998

    Article  Google Scholar 

  3. Mathias J, Bušić A, Meyn S (2023) Load-level control design for demand dispatch with heterogeneous flexible loads. IEEE Trans Control Syst Technol 31(4):1830–1843

    Article  Google Scholar 

  4. Zhao X et al (2022) Multimode operation mechanism analysis and power flow flexible control of a new type of electric energy router for low-voltage distribution network. IEEE Trans Smart Grid 13(5):3594–3606

    Article  Google Scholar 

  5. Li Z et al (2022) Active disturbance rejection control for static power converters in flexible AC traction power supply systems. IEEE Trans Energy Convers 37(4):2851–2862

    Article  Google Scholar 

  6. Li S, Wang L, Guo Y, Liu Z (2022) Flexible energy-transfer control of dynamic wireless power transfer system based on estimation of load and mutual inductance. IEEE Trans Industr Appl 58(1):1157–1167

    Article  Google Scholar 

  7. Wang J, Sun K, Xue C, Liu T, Li Y (2022) Multi-port DC-AC converter with differential power processing DC-DC converter and flexible power control for battery ESS integrated PV systems. IEEE Trans Industr Electron 69(5):4879–4889

    Article  Google Scholar 

  8. Sun X, Qiu J, Zhao J (2021) Optimal local volt/var control for photovoltaic inverters in active distribution networks. IEEE Trans Power Syst 36(6):5756–5766

    Article  Google Scholar 

  9. Jiang W, Lu C, Wu C (2023) Robust scheduling of thermostatically controlled loads with statistically feasible guarantees. IEEE Trans Smart Grid 14(5):3561–3572

    Article  Google Scholar 

  10. Sun X, Qiu J, Tao Y, Ma Y, Zhao J (2022) A multi-mode data-driven volt/var control strategy with conservation voltage reduction in active distribution networks. IEEE Trans Sustain Energy 13(2):1073–1085

    Article  Google Scholar 

  11. Zhang S, Leung K-C (2022) A smart cross-system framework for joint allocation and scheduling with vehicle-to-grid regulation service. IEEE Trans Veh Technol 71(6):6019–6031

    Article  Google Scholar 

  12. Escobar F, Víquez JM, García J, Aristidou P, Valverde G (2022) Coordination of DERs and flexible loads to support transmission voltages in emergency conditions. IEEE Trans Sustain Energy 13(3):1344–1355

    Article  Google Scholar 

  13. Saafan AA, Khadkikar V, Edpuganti A, El Moursi MS, Zeineldin HH (2024) A novel nonisolated four-port converter for flexible DC microgrid operation. IEEE Trans Industr Electron 71(2):1653–1664

    Article  Google Scholar 

  14. Kermani M, Shirdare E, Parise G, Bongiorno M, Martirano L (2022) A comprehensive technoeconomic solution for demand control in ports: energy storage systems integration. IEEE Trans Ind Appl 58(2):1592–1601

    Article  Google Scholar 

  15. Wu X, Liu J, Men Y, Chen B, Lu X (2023) Optimal energy storage system and smart switch placement in dynamic microgrids with applications to marine energy integration. IEEE Trans Sustain Energy 14(2):1205–1216

    Article  Google Scholar 

  16. Bao M, Hui H, Ding Y, Sun X, Zheng C, Gao X (2023) An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems. Appl Energy 338:120765

    Article  Google Scholar 

  17. Dahlin N, Jain R (2022) Scheduling flexible nonpreemptive loads in smart-grid networks. IEEE Trans Control Netw Syst 9(1):14–24

    Article  MathSciNet  Google Scholar 

  18. Gao H et al (2023) Machine learning-based reliability improvement of ambient mode extraction for smart grid utilizing isolation forest. IEEE Trans Power Syst 38(5):4752–4760

    Article  Google Scholar 

  19. Lai P, Duan L, Lin X (2021) Learning large electrical loads via flexible contracts with commitment. IEEE Trans Netw Sci Eng 8(2):1925–1940

    Article  MathSciNet  Google Scholar 

  20. Luo Z, Peng J, Yin R (2023) Many-objective day-ahead optimal scheduling of residential flexible loads integrated with stochastic occupant behavior models. Appl Energy 347:121348

    Article  Google Scholar 

  21. Chen M, Lu H, Chang X, Liao H (2023) An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load. Energy 273:127203

    Article  Google Scholar 

  22. **ong Y, Zeng Z, **n J, Song G, **a Y, Xu Z (2023) Renewable energy time series regulation strategy considering grid flexible load and N-1 faults. Energy 284:129140

    Article  Google Scholar 

  23. Saberi-Beglar K, Zare K, Seyedi H, Marzband M, Nojavan S (2023) Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads. Appl Energy 329:120265

    Article  Google Scholar 

  24. Liu X, Zhao T, Deng H, Wang P, Liu J, Blaabjerg F (2023) Microgrid energy management with energy storage systems: a review. CSEE J Power Energy Syst 9(2):483–504

    Google Scholar 

  25. Thirugnanam K, El Moursi MS, Khadkikar V, Zeineldin HH, Al Hosani M (2021) Energy management of grid interconnected multi-microgrids based on P2P energy exchange: a data driven approach. IEEE Trans Power Syst 36(2):1546–1562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzheng Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Li, Y., Zeng, Z. (2024). Overview of Flexible Load Control. In: Flexible Load Control for Enhancing Renewable Power System Operation. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-97-0312-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0312-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0311-1

  • Online ISBN: 978-981-97-0312-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation