Practical Implications of Dequantization on Machine Learning Algorithms: A Survey

  • Conference paper
  • First Online:
International Symposium on Intelligent Informatics (ISI 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 333))

Included in the following conference series:

  • 230 Accesses

Abstract

Despite the promise for performance and accuracy improvements of quantum inspired (QI) algorithms over classical machine learning (ML) algorithms, such gains have not been realized in practice. The quantum inspired algorithms can theoretically achieve significant speed up based on sampling assumptions and have thus far failed to outperform the existing classical ML models in practical applications. The speedup of quantum machine learning (QML) algorithms assume the access to data in quantum random access memory (QRAM) which is a strong assumption with current quantum architectures. QI algorithms assume sample and query (SQ) access to input vector and norms of matrices using a dynamic data structure. We explore the components of these models and the assumptions in this paper by surveying the recent works in QML and QI Machine learning (QIML) algorithms. We limit our study to QML and QIML models on achieving a speed up over classical ML techniques rather than individual proofs of these algorithms. This study highlights the assumptions being made that are currently not practical for QML and QIML algorithms in achieving performance advantage over classical ML algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Schuld, F. Petruccione, Supervised Learning with Quantum Computers. Springer Berlin Heidelberg (2018)

    Google Scholar 

  2. S. Aaronson, Read the fine print. 11(4), 291–293

    Google Scholar 

  3. J.M. Arrazola, A. Delgado, B.R. Bardhan, S. Lloyd, Quantum-inspired algorithms in practice. 4, 307 (2020)

    Google Scholar 

  4. M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini, Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)

    Google Scholar 

  5. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quant. Mach. Learn. 549(7671), 195–202 (2017)

    Google Scholar 

  6. M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio, P.J. Coles, Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Google Scholar 

  7. Y. Dahiya, D. Konomis, D.P. Woodruff, An empirical evaluation of sketching for numerical linear algebra, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18. Association for Computing Machinery. event-place: New York, NY, USA, 2018) pp. 1292–1300

    Google Scholar 

  8. V. Dunjko, H.J. Briegel, Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Progress Phys. 81(7), 074001 (2018)

    Google Scholar 

  9. V. Dunjko, J.M. Taylor, H.J. Briegel, Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)

    Google Scholar 

  10. E. Farhi, H. Neven, Classification with quantum neural networks on near term processors. Physics (2018). ar**v: Quantum

  11. Alan Frieze, Ravi Kannan, Santosh Vempala, Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM 51(6), 1025–1041 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Gilyén, Z. Song, E. Tang, An improved quantum-inspired algorithm for linear regression. Quantum 6, 754 (2022)

    Google Scholar 

  13. A. Gilyén, Y. Su, G.H. Low, N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (ACM, 2019)

    Google Scholar 

  14. A. Gilyén, S. Lloyd, E. Tang, Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension (2018)

    Google Scholar 

  15. V. Giovannetti, S. Lloyd, L. Maccone, Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Google Scholar 

  16. A. Green, E. Kaplitz, Quantum random access memory (2019)

    Google Scholar 

  17. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Association for Computing Machinery (STOC ’96, New York, NY, USA, 1996), pp. 212-219

    Google Scholar 

  18. I. Kerenidis, A. Prakash, Quantum recommendation systems (2016)

    Google Scholar 

  19. I. Kerenidis, A. Prakash, Quantum recommendation systems, in 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, vol. 67 of LIPIcs ed by C.H. Papadimitriou (Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017), pp. 49:1–49:21

    Google Scholar 

  20. T.M. Khan, A. Robles-Kelly, Machine learning: quantum vs classical. IEEE Access 8, 219275–219294 (2020)

    Google Scholar 

  21. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum principal component analysis. 10(9), 631–633 (2014)

    Google Scholar 

  22. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning (2013)

    Google Scholar 

  23. F.V. Massoli, L. Vadicamo, G. Amato, F. Falchi, A leap among quantum computing and quantum neural networks: a survey. ACM Comput. Surv. (2022)

    Google Scholar 

  24. A. Prakash, Quantum Algorithms for Linear Algebra and Machine Learning. PhD thesis, EECS Department, University of California, Berkeley (2014)

    Google Scholar 

  25. P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13) (2014)

    Google Scholar 

  26. S. Resch, U.R. Karpuzcu, Quantum computing: an overview across the system stack (2019)

    Google Scholar 

  27. Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Tang, An overview of quantum-inspired classical sampling

    Google Scholar 

  29. E. Tang, A quantum-inspired classical algorithm for recommendation systems, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC, Association for Computing Machinery. event-place: New York, NY, USA, 2019), pp. 217–228

    Google Scholar 

  30. E. Tang, Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. 127(6), 060503 (2021)

    Google Scholar 

  31. P. Wittek, Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press. OCLC: 894732496) (2014)

    Google Scholar 

  32. W. Zeng, B. Coecke, Quantum algorithms for compositional natural language processing. Electron. Proc. Theor. Comput. Sci. 221, 67–75 (2016)

    Google Scholar 

  33. Iordanis Kerenidis, Alessandro Luongo, Classification of the mnist data set with quantum slow feature analysis. Phys. Rev. A 101, 062327 (2020)

    Article  Google Scholar 

  34. O. Anatole vonLilienfeld, Quantum machine learning in chemical compound space. Angewandte Chemie Int. 57(16), 4164–4169

    Google Scholar 

  35. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15) (2009)

    Google Scholar 

  36. O. Anatole vonLilienfeld, Quantum machine learning in chemical compound space. Angewandte Chemie Int. 57(16), 4164–4169

    Google Scholar 

  37. I. Kerenidis, A. Luongo, Classification of the mnist data set with quantum slow feature analysis. Phys. Rev. A 101, 062327 (2020)

    Google Scholar 

  38. P. Rebentrost, S. Lloyd, Quantum computational finance: quantum algorithm for portfolio optimization. Physics (2018). ar**v: Quantum

  39. J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Google Scholar 

  40. H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang, M.-C. Chen, L.-C. Peng, Y.-H. Luo, W. Dian, S.-Q. Gong, S. Hao, H. Yi, H. Peng, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, J.J. Renema, L. Chao-Yang, J.-W. Pan, Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021)

    Google Scholar 

  41. S. Aaronson, L. Chen, Complexity-theoretic foundations of quantum supremacy experiments (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulkarni, V.R., Chen, D., Xu, S., Guan, Q., Chaudhary, V. (2023). Practical Implications of Dequantization on Machine Learning Algorithms: A Survey. In: Thampi, S.M., Mukhopadhyay, J., Paprzycki, M., Li, KC. (eds) International Symposium on Intelligent Informatics. ISI 2022. Smart Innovation, Systems and Technologies, vol 333. Springer, Singapore. https://doi.org/10.1007/978-981-19-8094-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8094-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8093-0

  • Online ISBN: 978-981-19-8094-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation