Classification and Gene Structure of Aquaporins

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

  • 1180 Accesses

Abstract

Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, 13 AQPs, distributed widely in specific cell types in various organs and tissues, have been characterized in humans. A pair of NPA boxes forming a pore is highly conserved among all aquaporins and is also key residues for the classification of AQP superfamily into four groups according to primary sequences. AQPs may also be classified based on their transport properties. So far, chromosome localization and gene structure of 13 human AQPs have been identified, which is definitely helpful for studying phenotypes and potential targets in naturally occurring and synthetic mutations in human or cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840(5):1468–1481

    Article  CAS  PubMed  Google Scholar 

  2. Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229(1):6–23

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286(5):3342–3350

    Article  CAS  PubMed  Google Scholar 

  4. Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840(5):1507–1512

    Article  CAS  PubMed  Google Scholar 

  5. Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330(3):832–838

    Article  CAS  PubMed  Google Scholar 

  6. Ishibashi K, Tanaka Y, Morishita Y (2021) The role of mammalian superaquaporins inside the cell: an update. Biochim Biophys Acta Biomembr 1863(7):183617

    Article  CAS  PubMed  Google Scholar 

  7. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol 304(10):C985–C994

    Article  PubMed  Google Scholar 

  8. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402(6758):184–187

    Article  CAS  PubMed  Google Scholar 

  9. Calvanese L, Pellegrini-Calace M, Oliva R (2013) In silico study of human aquaporin AQP11 and AQP12 channels. Protein Sci 22(4):455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishibashi K, Tanaka Y, Morishita Y (2020) Perspectives on the evolution of aquaporin superfamily. Vitam Horm 112:1–27

    Article  CAS  PubMed  Google Scholar 

  11. Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327

    Article  CAS  PubMed  Google Scholar 

  12. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I (1997) Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 272(48):30329–30333

    Article  CAS  PubMed  Google Scholar 

  13. Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240(2):324–328

    Article  CAS  PubMed  Google Scholar 

  14. Koyama N, Ishibashi K, Kuwahara M, Inase N, Ichioka M, Sasaki S, Marumo F (1998) Cloning and functional expression of human aquaporin8 cDNA and analysis of its gene. Genomics 54(1):169–172

    Article  CAS  PubMed  Google Scholar 

  15. Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574(1–3):31–36

    Article  CAS  PubMed  Google Scholar 

  16. Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 450(6):415–428

    Article  CAS  PubMed  Google Scholar 

  17. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282(8):5296–5301

    Article  CAS  PubMed  Google Scholar 

  18. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of as(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  20. Verma RK, Gupta AB, Sankararamakrishnan R (2015) Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters. Methods Enzymol 557:485–520

    Article  CAS  PubMed  Google Scholar 

  21. Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272(26):16140–16146

    Article  CAS  PubMed  Google Scholar 

  22. Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91(23):10997–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272(33):20782–20786

    Article  CAS  PubMed  Google Scholar 

  24. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576(3):335–340

    Article  CAS  PubMed  Google Scholar 

  25. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 277(5):F685–F696

    CAS  PubMed  Google Scholar 

  26. Clemens DM, Nemeth-Cahalan KL, Trinh L, Zhang T, Schilling TF, Hall JE (2013) In vivo analysis of aquaporin 0 function in zebrafish: permeability regulation is required for lens transparency. Invest Ophthalmol Vis Sci 54(7):5136–5143

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159(1):29–39

    Article  CAS  PubMed  Google Scholar 

  28. Varadaraj K, Kumari SS (2020) Lens aquaporins function as peroxiporins to facilitate membrane transport of hydrogen peroxide. Biochem Biophys Res Commun 524(4):1025–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonen T, Cheng Y, Kistler J, Walz T (2004) Aquaporin-0 membrane junctions form upon proteolytic cleavage. J Mol Biol 342(4):1337–1345

    Article  CAS  PubMed  Google Scholar 

  30. Varadaraj K, Kumari S (2019) Deletion of seventeen amino acids at the C-terminal end of aquaporin 0 causes distortion aberration and cataract in the lenses of AQP0DeltaC/DeltaC mice. Invest Ophthalmol Vis Sci 60(4):858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varadaraj K, FitzGerald PG, Kumari SS (2021) Deletion of beaded filament proteins or the C-terminal end of aquaporin 0 causes analogous abnormal distortion aberrations in mouse lens. Exp Eye Res 209:108645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varadaraj K, Gao J, Mathias RT, Kumari S (2019) C-terminal end of aquaporin 0 regulates lens gap Junction Channel function. Invest Ophthalmol Vis Sci 60(7):2525–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nemeth-Cahalan KL, Kalman K, Hall JE (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 123(5):573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T (2013) Allosteric mechanism of water-channel gating by Ca2+−calmodulin. Nat Struct Mol Biol 20(9):1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu C, Peng K, Wu Q, Wang Y, Fan X, Zhang DM, Passerini AG, Sun C (2021) HDAC1 and 2 regulate endothelial VCAM-1 expression and atherogenesis by suppressing methylation of the GATA6 promoter. Theranostics 11(11):5605–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263(30):15634–15642

    Article  CAS  PubMed  Google Scholar 

  37. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88(24):11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055):385–387

    Article  CAS  PubMed  Google Scholar 

  39. Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273(50):33123–33126

    Article  CAS  PubMed  Google Scholar 

  40. Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274(2):C543–C548

    Article  CAS  PubMed  Google Scholar 

  41. Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, Bill RM Conner MT (2014) human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta 1840(5):1492–1506

    Google Scholar 

  42. Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, Cartron JP (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol 13(1–2):117–122

    Article  CAS  PubMed  Google Scholar 

  43. Anthony TL, Brooks HL, Boassa D, Leonov S, Yanochko GM, Regan JW, Yool AJ (2000) Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 57(3):576–588

    Article  CAS  PubMed  Google Scholar 

  44. Campbell EM, Birdsell DN, Yool AJ (2012) The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain. Mol Pharmacol 81(1):97–105

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W, Zitron E, Homme M, Kihm L, Morath C, Scherer D, Hegge S, Thomas D, Schmitt CP, Zeier M, Katus H, Karle C, Schwenger V (2007) Aquaporin-1 channel function is positively regulated by protein kinase C. J Biol Chem 282(29):20933–20940

    Article  CAS  PubMed  Google Scholar 

  46. Kramolowsky EV, Tucker RD (1990) Use of 5F bipolar electrosurgical probe in endoscopic urological procedures. J Urol 143(2):275–277

    Article  CAS  PubMed  Google Scholar 

  47. Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL (2020) Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 12(564):eaay2176

    Article  CAS  PubMed  Google Scholar 

  48. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361(6412):549–552

    Article  CAS  PubMed  Google Scholar 

  49. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90(24):11663–11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marples D, Knepper MA, Christensen EI, Nielsen S (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol 269(3 Pt 1):C655–C664

    Article  CAS  PubMed  Google Scholar 

  51. Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270(39):22907–22913

    Article  CAS  PubMed  Google Scholar 

  52. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271(9):4577–4580

    Article  CAS  PubMed  Google Scholar 

  53. Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129(4):947–955

    Article  CAS  PubMed  Google Scholar 

  54. Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Tornroth-Horsefield S, Conner MT, Ahmed Z, Conner AC, Bill RM (2020) Targeting Aquaporin-4 subcellular localization to treat central nervous system edema. Cell 181(4):784–799e719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishida H, Vogel HJ, Conner AC, Kitchen P, Bill RM, MacDonald JA (2022) Simultaneous binding of the N- and C-terminal cytoplasmic domains of aquaporin 4 to calmodulin. Biochim Biophys Acta Biomembr 1864(2):183837

    Article  CAS  PubMed  Google Scholar 

  56. Assentoft M, Kaptan S, Fenton RA, Hua SZ, de Groot BL, MacAulay N (2013) Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating. Glia 61(7):1101–1112

    Article  PubMed  Google Scholar 

  57. Direito I, Madeira A, Brito MA, Soveral G (2016) Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 73(8):1623–1640

    Article  CAS  PubMed  Google Scholar 

  58. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106(13):5406–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasegawa T, Azlina A, Javkhlan P, Yao C, Akamatsu T, Hosoi K (2011) Novel phosphorylation of aquaporin-5 at its threonine 259 through cAMP signaling in salivary gland cells. Am J Physiol Cell Physiol 301(3):C667–C678

    Article  CAS  PubMed  Google Scholar 

  60. Woo J, Lee J, Kim MS, Jang SJ, Sidransky D, Moon C (2008) The effect of aquaporin 5 overexpression on the Ras signaling pathway. Biochem Biophys Res Commun 367(2):291–298

    Article  CAS  PubMed  Google Scholar 

  61. Tada J, Sawa T, Yamanaka N, Shono M, Akamatsu T, Tsumura K, Parvin MN, Kanamori N, Hosoi K (1999) Involvement of vesicle-cytoskeleton interaction in AQP5 trafficking in AQP5-gene-transfected HSG cells. Biochem Biophys Res Commun 266(2):443–447

    Article  CAS  PubMed  Google Scholar 

  62. Ishikawa Y, Skowronski MT, Inoue N, Ishida H (1999) Alpha(1)-adrenoceptor-induced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem Biophys Res Commun 265(1):94–100

    Article  CAS  PubMed  Google Scholar 

  63. Verlander JW, Madsen KM, Tisher CC (1987) Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol 253(6 Pt 2):F1142–F1156

    CAS  PubMed  Google Scholar 

  64. Soler DC, Kowatz T, Sloan AE, McCormick TS, Cooper KD, Stepanyan R, Engel A, Vahedi-Faridi A (2021) A region within the third extracellular loop of rat aquaporin 6 precludes trafficking to plasma membrane in a heterologous cell line. Sci Rep 11(1):13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu K, Kozono D, Kato Y, Agre P, Hazama A, Yasui M (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci U S A 102(6):2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch 448(2):181–186

    Article  CAS  PubMed  Google Scholar 

  67. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277(42):39873–39879

    Article  CAS  PubMed  Google Scholar 

  68. Beitz E, Liu K, Ikeda M, Guggino WB, Agre P, Yasui M (2006) Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biol Cell 98(2):101–109

    Article  CAS  PubMed  Google Scholar 

  69. Rabaud NE, Song L, Wang Y, Agre P, Yasui M, Carbrey JM (2009) Aquaporin 6 binds calmodulin in a calcium-dependent manner. Biochem Biophys Res Commun 383(1):54–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi S, Muta K, Sonoda H, Kato A, Abdeen A, Ikeda M (2014) The role of cysteine 227 in subcellular localization, water permeability, and multimerization of aquaporin-11. FEBS Open Bio 4:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768(3):688–693

    Article  CAS  PubMed  Google Scholar 

  72. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174(2):315–320

    Article  CAS  PubMed  Google Scholar 

  73. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25(17):7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S (2014) Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol 25(12):2789–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bestetti S, Galli M, Sorrentino I, Pinton P, Rimessi A, Sitia R, Medrano-Fernandez I (2020) Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol 28:101326

    Article  CAS  PubMed  Google Scholar 

  76. Fruhbeck G, Balaguer I, Mendez-Gimenez L, Valenti V, Becerril S, Catalan V, Gomez-Ambrosi J, Silva C, Salvador J, Calamita G, Malagon MM, Rodriguez A (2020) Aquaporin-11 contributes to TGF-beta1-induced endoplasmic reticulum stress in human visceral adipocytes: role in obesity-associated inflammation. Cell 9(6):1403

    Article  CAS  Google Scholar 

  77. Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SB, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T (2009) Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Physiol Cell Physiol 297(6):C1368–C1378

    Article  CAS  PubMed  Google Scholar 

  78. Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281(6):F1047–F1057

    Article  CAS  PubMed  Google Scholar 

  79. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280(17):17149–17153

    Article  CAS  PubMed  Google Scholar 

  80. Yang B, Zhao D, Verkman AS (2006) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281(24):16202–16206

    Article  CAS  PubMed  Google Scholar 

  81. Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393(2):217–221

    Article  CAS  PubMed  Google Scholar 

  82. Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 303(3):F458–F466

    Article  CAS  PubMed  Google Scholar 

  83. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192

    Article  CAS  PubMed  Google Scholar 

  84. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840(5):1596–1604

    Article  CAS  PubMed  Google Scholar 

  85. de Almeida A, Martins AP, Mosca AF, Wijma HJ, Prista C, Soveral G, Casini A (2016) Exploring the gating mechanisms of aquaporin-3: new clues for the design of inhibitors? Mol Biosyst 12(5):1564–1573

    Article  PubMed  Google Scholar 

  86. Marlar S, Arnspang EC, Koffman JS, Locke EM, Christensen BM, Nejsum LN (2014) Elevated cAMP increases aquaporin-3 plasma membrane diffusion. Am J Physiol Cell Physiol 306(6):C598–C606

    Article  CAS  PubMed  Google Scholar 

  87. Jourdain P, Becq F, Lengacher S, Boinot C, Magistretti PJ, Marquet P (2014) The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy. J Cell Sci 127(Pt 3):546–556

    CAS  PubMed  Google Scholar 

  88. Hua Y, Ding S, Zhang W, Zhou Q, Ye W, Chen M, Zhu X (2015) Expression of AQP3 protein in hAECs is regulated by camp-PKA-CREB signalling pathway. Front Biosci 20:1047–1055

    Article  CAS  Google Scholar 

  89. Almasalmeh A, Krenc D, Wu B, Beitz E (2014) Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J 281(3):647–656

    Article  CAS  PubMed  Google Scholar 

  90. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107(36):15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209(10):1743–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS (2015) Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 6:7454

    Article  CAS  PubMed  Google Scholar 

  93. Hara-Chikuma M, Watanabe S, Satooka H (2016) Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun 471(4):603–609

    Article  CAS  PubMed  Google Scholar 

  94. Satooka H, Hara-Chikuma M (2016) Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol 36(7):1206–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99(9):6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maeda N (2012) Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Mol Aspects Med 33(5–6):665–675

    Article  CAS  PubMed  Google Scholar 

  97. Miranda M, Escote X, Ceperuelo-Mallafre V, Alcaide MJ, Simon I, Vilarrasa N, Wabitsch M, Vendrell J (2010) Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots. J Clin Endocrinol Metab 95(7):3470–3479

    Article  CAS  PubMed  Google Scholar 

  98. Mendez-Gimenez L, Becerril S, Camoes SP, da Silva IV, Rodrigues C, Moncada R, Valenti V, Catalan V, Gomez-Ambrosi J, Miranda JP, Soveral G, Fruhbeck G, Rodriguez A (2017) Role of aquaporin-7 in ghrelin- and GLP-1-induced improvement of pancreatic beta-cell function after sleeve gastrectomy in obese rats. Int J Obes (Lond) 41(9):1394–1402

    Article  CAS  PubMed  Google Scholar 

  99. Matsumura K, Chang BH, Fujimiya M, Chen W, Kulkarni RN, Eguchi Y, Kimura H, Kojima H, Chan L (2007) Aquaporin 7 is a beta-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, beta-cell mass, and insulin production and secretion. Mol Cell Biol 27(17):6026–6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276(3):1118–1128

    Article  CAS  PubMed  Google Scholar 

  101. Viadiu H, Gonen T, Walz T (2007) Projection map of aquaporin-9 at 7 a resolution. J Mol Biol 367(1):80–88

    Article  CAS  PubMed  Google Scholar 

  102. Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471(1):191–197

    Article  CAS  PubMed  Google Scholar 

  103. Loitto VM, Huang C, Sigal YJ, Jacobson K (2007) Filopodia are induced by aquaporin-9 expression. Exp Cell Res 313(7):1295–1306

    Article  CAS  PubMed  Google Scholar 

  104. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294(3):630–634

    Article  CAS  PubMed  Google Scholar 

  105. Laforenza U, Scaffino MF, Gastaldi G (2013) Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One 8(1):e54474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Oberg F, Sjohamn J, Fischer G, Moberg A, Pedersen A, Neutze R, Hedfalk K (2011) Glycosylation increases the thermostability of human aquaporin 10 protein. J Biol Chem 286(36):31915–31923

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gotfryd K, Mosca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Helix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P (2018) Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun 9(1):4749

    Article  PubMed  PubMed Central  Google Scholar 

  108. Truelsen SF, Missel JW, Gotfryd K, Pedersen PA, Gourdon P, Lindorff-Larsen K (1864) Helix-Nielsen C (2022) the role of water coordination in the pH-dependent gating of hAQP10. Biochim Biophys Acta Biomembr 1:183809

    Google Scholar 

  109. Pisano MM, Chepelinsky AB (1991) Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 11(4):981–990

    Article  CAS  PubMed  Google Scholar 

  110. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265(4 Pt 2):F463–F476

    CAS  PubMed  Google Scholar 

  111. van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55(4):648–652

    PubMed  PubMed Central  Google Scholar 

  112. Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264(5155):92–95

    Article  CAS  PubMed  Google Scholar 

  113. Deen PM, Weghuis DO, Sinke RJ, Geurts van Kessel A, Wieringa B, van Os CH (1994) Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12-->q13. Cytogenet Cell Genet 66(4):260–262

    Article  CAS  PubMed  Google Scholar 

  114. Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8(6):861–867

    Article  CAS  PubMed  Google Scholar 

  115. Sasaki S, Fushimi K, Saito H, Saito F, Uchida S, Ishibashi K, Kuwahara M, Ikeuchi T, Inui K, Nakajima K et al (1994) Cloning, characterization, and chromosomal map** of human aquaporin of collecting duct. J Clin Invest 93(3):1250–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ishibashi K, Sasaki S, Saito F, Ikeuchi T, Marumo F (1995) Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 27(2):352–354

    Article  CAS  PubMed  Google Scholar 

  117. Inase N, Fushimi K, Ishibashi K, Uchida S, Ichioka M, Sasaki S, Marumo F (1995) Isolation of human aquaporin 3 gene. J Biol Chem 270(30):17913–17916

    Article  CAS  PubMed  Google Scholar 

  118. Lu M, Lee MD, Smith BL, Jung JS, Agre P, Verdijk MA, Merkx G, Rijss JP, Deen PM (1996) The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci U S A 93(20):10908–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee MD, Bhakta KY, Raina S, Yonescu R, Griffin CA, Copeland NG, Gilbert DJ, Jenkins NA, Preston GM, Agre P (1996) The human Aquaporin-5 gene. Molecular characterization and chromosomal localization. J Biol Chem 271(15):8599–8604

    Article  CAS  PubMed  Google Scholar 

  120. Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35(3):543–550

    Article  CAS  PubMed  Google Scholar 

  121. Ma T, Yang B, Umenishi F, Verkman AS (1997) Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13. Genomics 43(3):387–389

    Article  CAS  PubMed  Google Scholar 

  122. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269(7):1814–1826

    Article  CAS  PubMed  Google Scholar 

  123. Ishibashi K, Yamauchi K, Kageyama Y, Saito-Ohara F, Ikeuchi T, Marumo F, Sasaki S (1998) Molecular characterization of human Aquaporin-7 gene and its chromosomal map**. Biochim Biophys Acta 1399(1):62–66

    Article  CAS  PubMed  Google Scholar 

  124. Viggiano L, Rocchi M, Svelto M, Calamita G (1999) Assignment of the aquaporin-8 water channel gene (AQP8) to human chromosome 16p11. Cytogenet Cell Genet 84(3–4):208–210

    Article  CAS  PubMed  Google Scholar 

  125. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244(1):268–274

    Article  CAS  PubMed  Google Scholar 

  126. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287(4):814–819

    Article  CAS  PubMed  Google Scholar 

  127. Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Suzuki M, Imai M (2000) Molecular cloning of a new aquaporin superfamily in mammals: AQPX1 and AQPX2. In: Hohmann SN (ed) Molecular biology and physiology of water and solute transport, vol 1, 1st edn. Kluwer Academic/Plenum, New York, pp 123–126

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 82170693, 81870465, 81970623, 81670646).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Wang or Chunling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, L., Guo, X., Wang, W., Li, C. (2023). Classification and Gene Structure of Aquaporins. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_1

Download citation

Publish with us

Policies and ethics

Navigation