A Scheduling Plan Model for Metro Crew Incorporating Fatigue and Biological Rhythms

  • Conference paper
  • First Online:
Green Transportation and Low Carbon Mobility Safety (GITSS 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 944))

  • 462 Accesses

Abstract

Crew scheduling is one of the critical planning decisions in railway transportation. The existing scheduling and rostering methods usually take the lowest cost as the objective, ignoring the metrzzo crew members’ fatigue and biological rhythms. This paper proposed an optimization approach considering fatigue's impact on solving real-world metro crew scheduling and rostering problems. The shift work characteristics of the metro crew were analyzed firstly. The usability of the Ikeda formula for fatigue evaluation was verified and applied to the metro crew. Then the metro crew scheduling and rostering model were described, and the process of incorporating fatigue factors into the model was demonstrated. Moreover, using the genetic algorithm to solve the problems. Finally, this model was applied to the Bei**g Metro Yanfang Line. The results illustrated that the method could significantly reduce the metro crew members’ fatigue value with optimized operating costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Arendt J (2010) Shift work: co** with the biological clock. Occup Med 60(1):10–20. https://doi.org/10.1093/occmed/kqp162

    Article  Google Scholar 

  2. Rogers AS, Spencer MB, Stone BM (1999) Validation and development of a method for assessing the risks arising from mental fatigue. Health Safety Executive, Sudbury

    Google Scholar 

  3. Bowden ZE, Ragsdale CT (2018) The truck driver scheduling problem with fatigue monitoring. Decis Support Syst 110:20–31. https://doi.org/10.1016/j.dss.2018.03.002

    Article  Google Scholar 

  4. Bowler N, Gibson H (2015) Fatigue and its contributions to railway incidents. Rail Safety and Standards Board, London

    Google Scholar 

  5. Caprara A, Fischetti M, Toth P, Vigo D, Guida PL (1997) Algorithms for railway crew management. Math Prog 79(1–3):125–141. https://doi.org/10.1007/BF02614314

    Article  MathSciNet  MATH  Google Scholar 

  6. Caprara A, Monaci M, Toth P (2001) A global method for crew planning in railway applications. Comput Aided Scheduling Public Transport, Springer 17–36. https://doi.org/10.1007/978-3-642-56423-9_2

  7. Ceder AA, Hassold S (2015) Applied analysis for improving rail-network operations. J Rail Trans Planning Manag 5(2):50–63. https://doi.org/10.1016/j.jrtpm.2015.06.001

    Article  Google Scholar 

  8. Chu SC (2007) Generating, scheduling and rostering of shift crew-duties: applications at the Hong Kong International Airport. Eur J Oper Res 177(3):1764–1778. https://doi.org/10.1016/j.ejor.2005.10.008

    Article  MATH  Google Scholar 

  9. Clement R, Wren A (1995) Greedy genetic algorithms, optimizing mutations and bus driver scheduling. Comput Aided Transit Scheduling, Springer 213–235. https://doi.org/10.1007/978-3-642-57762-8_14

  10. Crum MR, Morrow PC (2002) The influence of carrier scheduling practices on truck driver fatigue. Transp J 42(1):20–41. https://doi.org/10.2307/20713513

    Article  Google Scholar 

  11. Dorrian J, Roach GD, Fletcher A, Dawson D (2007) Simulated train driving: fatigue, self-awareness and cognitive disengagement. Appl Ergon 38(2):155–166. https://doi.org/10.1016/j.apergo.2006.03.006

    Article  Google Scholar 

  12. Dos Santos AG, Mateus GR (2009) General hybrid column generation algorithm for crew scheduling problems using genetic algorithm. In: Proceedings of IEEE congress on evolutionary computation. IEEE 1799–1806. https://doi.org/10.1109/cec.2009.4983159

  13. Elizondo R, Parada V, Pradenas L, Artigues C (2010) An evolutionary and constructive approach to a crew scheduling problem in underground passenger transport. J Heuristics 16(4):575–591. https://doi.org/10.1007/s10732-009-9102-x

    Article  MATH  Google Scholar 

  14. Ernst A, Jiang H, Krishnamoorthy M, Nott H, Sier D (2001) Rail crew scheduling and rostering optimization algorithms. Computer-Aided Scheduling of Public Transport, Springer 53–71. https://doi.org/10.1007/978-3-642-56423-9_4

  15. Ernst AT, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: a review of applications, methods and models. Eur J Oper Res 153(1):3–27. https://doi.org/10.1016/s0377-2217(03)00095-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Filtness AJ, Naweed A (2017) Causes, consequences and countermeasures to driver fatigue in the rail industry: the train driver perspective. Appl Ergon 60:12–21. https://doi.org/10.1016/j.apergo.2016.10.009

    Article  Google Scholar 

  17. Freling R, Huisman D, Wagelmans AP (2001) Applying an integrated approach to vehicle and crew scheduling in practice. Comput Aided Scheduling Public Transport, Springer 73–90. https://doi.org/10.1007/978-3-642-56423-9_5

  18. Freling R, Lentink RM, Odijk MA (2001) Scheduling train crews: a case study for the Dutch railways. Comput Aided Scheduling Public Transport, Springer 153–165. https://doi.org/10.1007/978-3-642-56423-9_9

  19. Fuentes M, Cadarso L, Marín Á (2019) A hybrid model for crew scheduling in rail rapid transit networks. Transport Res Part B Methodol 125:248–265. https://doi.org/10.1016/j.trb.2019.05.007

    Article  Google Scholar 

  20. García J, Altimiras F, Peña A, Astorga G, Peredo O (2018) A binary cuckoo search big data algorithm applied to large-scale crew scheduling problems. Complexity. https://doi.org/10.1155/2018/8395193

  21. Han AF, Li EC (2014) A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system. Ann Oper Res 223(1):173–193. https://doi.org/10.1007/s10479-014-1619-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Van Dongen HP, Dinges DF (2005) Circadian rhythms in fatigue, alertness, and performance. In: Meir TR, Kryger R, William R, Dement W (eds) pp 435–443. Principles and Practice of Sleep Medicine (Fourth Edition). https://doi.org/10.1016/B0-72-160797-7/50042-2

  23. Hartley L, Horberry T, Mabbott N, Krueger GP (2000) Review of fatigue detection and prediction technologies. National Road Transport Commission Virginia

    Google Scholar 

  24. Heil J, Hoffmann K, Buscher U (2019) Railway crew scheduling: models, methods and applications. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2019.06.016

    Article  MATH  Google Scholar 

  25. Hoffmann K, Buscher U (2019) Valid inequalities for the arc flow formulation of the railway crew scheduling problem with attendance rates. Comput Ind Eng 127:1143–1152. https://doi.org/10.1016/j.cie.2018.05.031

    Article  Google Scholar 

  26. Jütte S, Müller D, Thonemann UW (2017) Optimizing railway crew schedules with fairness preferences. J Sched 20(1):43–55. https://doi.org/10.1007/s10951-016-0499-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Kazuhiro S (2002) Revised work of the Japanese society for occupational health industry fatigue study group “Subjective symptoms” 2002. (Japanese). Digest of science of labour 57(5):295–298

    Google Scholar 

  28. Khmeleva E, Hopgood AA, Tipi L, Shahidan M (2018) Fuzzy-logic controlled genetic algorithm for the rail-freight crew-scheduling problem. KI-Künstliche Intelligenz 32(1):61–75. https://doi.org/10.1007/s13218-017-0516-6

    Article  Google Scholar 

  29. Korf RE (1998) A complete anytime algorithm for number partitioning. Artif Intell 106(2):181–203. https://doi.org/10.1016/s0004-3702(98)00086-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee C-K (2004) The integrated scheduling and rostering problem of train driver using Genetic algorithm. In: Proceedings of 9th international conference on computer-aided scheduling of public transport (CASPT), San Diego–California, Citeseer

    Google Scholar 

  31. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  32. Li Si FW, Wu, Jie, Bin W (2019) A comparison between two methods of evaluating shift subway drivers fatigue (Chinese). China Safety Sci J 029(002):7–12

    Google Scholar 

  33. Ma J, Ceder A, Yang Y, Liu T, Guan W (2016) A case study of Bei**g bus crew scheduling: a variable neighborhood-based approach. J Adv Transp 50(4):434–445. https://doi.org/10.1002/atr.1333

    Article  Google Scholar 

  34. Masahiro O (1979) Fatigue research (Second Edition), Tong Wen College, Tokyo

    Google Scholar 

  35. McGuffog A, Spencer MB, Stone BM, Turner C (2005) Guidelines for the management and reduction of fatigue in train drivers. Report T059. London: RSSB.

    Google Scholar 

  36. McGuffog A, Spencer MB, Stone BM, Turner C (2004) Working patterns of train drivers: implications for fatigue and safety. QinetiQ Centre for Human Sciences Report. KI/CHS/CR043098

    Google Scholar 

  37. Mingozzi A, Boschetti MA, Ricciardelli S, Bianco L (1999) A set partitioning approach to the crew scheduling problem. Oper Res 47(6):873–888. https://doi.org/10.1287/opre.47.6.873

    Article  MATH  Google Scholar 

  38. Monk TH, Kennedy KS, Rose LR, Linenger JM (2001) Decreased human circadian pacemaker influence after 100 days in space: a case study. Psychosom Med 63(6):881–885. https://doi.org/10.1097/00006842-200111000-00005

    Article  Google Scholar 

  39. Naweed A (2014) Investigations into the skills of modern and traditional train driving. Appl Ergon 45(3):462–470. https://doi.org/10.1016/j.apergo.2013.06.006

    Article  Google Scholar 

  40. Neri DF, Oyung RL, Colletti LM, Mallis MM, Tam PY, Dinges DF (2002) Controlled breaks as a fatigue countermeasure on the flight deck. Aviat Space Environ Med 73(7):654–664. https://doi.org/10.1016/S1352-2310(02)00273-X

    Article  Google Scholar 

  41. Nesthus T, Cruz C, Boquet A, Detwiler C, Holcomb K, Della Rocco P (2001) Circadian temperature rhythms in clockwise and counter-clockwise rapidly rotating shift schedules. J Human Ergol 30(1–2), 245–249. https://doi.org/10.11183/jhe1972.30.245

  42. Parasuraman R, Sheridan TB, Wickens CD (2008) Situation awareness, mental workload, and trust in automation: viable, empirically supported cognitive engineering constructs. J Cogn Eng Decision Making 2(2):140–160. https://doi.org/10.1518/155534308x284417

    Article  Google Scholar 

  43. Shen J, Botly LC, Chung SA, Gibbs AL, Sabanadzovic S, Shapiro CM (2006) Fatigue and shift work. J Sleep Res 15(1):1–5. https://doi.org/10.1111/j.1365-2869.2006.00493.x

    Article  Google Scholar 

  44. Shen Y, Peng K, Chen K, Li J (2013) Evolutionary crew scheduling with adaptive chromosomes. Trans Res Part B Methodol 56:174–185. https://doi.org/10.1016/j.trb.2013.08.003

    Article  Google Scholar 

  45. Shiffer D, Minonzio M, Dipaola F, Bertola M, Zamuner AR, Dalla Vecchia LA, Solbiati M, Costantino G, Furlan R, Barbic F (2018) Effects of clockwise and counterclockwise job shift work rotation on sleep and work-life balance on hospital nurses. Int J Environ Res Public Health 15(9):2038. https://doi.org/10.3390/ijerph15092038

    Article  Google Scholar 

  46. Sodhi MS, Norris S (2004) A flexible, fast, and optimal modeling approach applied to crew rostering at London Underground. Ann Oper Res 127(1–4):259–281. https://doi.org/10.1023/b:anor.0000019092.76669.a1

    Article  MATH  Google Scholar 

  47. Souai N, Teghem J (2009) Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. Eur J Oper Res 199(3):674–683. https://doi.org/10.1016/j.ejor.2007.10.065

    Article  MathSciNet  MATH  Google Scholar 

  48. Spencer M, Robertson K, Folkard S (2006) The development of a fatigue/risk index for shiftworkers. Health and Safety Executive, Sudbury

    Google Scholar 

  49. Suyabatmaz AÇ, Şahin G (2015) Railway crew capacity planning problem with connectivity of schedules. Transport Res Part E Logistics Transport Rev 84:88–100. https://doi.org/10.1016/j.tre.2015.10.003

    Article  Google Scholar 

  50. Toshiaki T, Shinzo Y (1991) The validity of the workload evaluation by driver’s subjective symptoms. Jpn J Ergonom 27(Suppl):248–249. https://doi.org/10.5100/jje.27.Supplement_248

    Article  Google Scholar 

  51. Toshihisa I, Hisae O (1986) Quantification of workload in power car operation (Japanese). Jpn J Ergonom 22(Supplement):182–183

    Google Scholar 

  52. Tsukasaki K, Kido T, Makimoto K, Naganuma R, Sunaga K (2006) The impact of sleep interruptions on vital measurements and chronic fatigue of female caregivers providing home care in Japan. Nurs Health Sci 8(1):2–9. https://doi.org/10.1111/j.1442-2018.2006.00261.x

    Article  Google Scholar 

  53. Vazirani VV (2013) Approximation algorithms, Springer Science & Business Media

    Google Scholar 

  54. Wang Q, Yang J, Ren M, Zheng Y (2006) Driver fatigue detection: a survey. In: Proceedings of 6th world congress on intelligent control and automation. IEEE 8587–8591. https://doi.org/10.1109/wcica.2006.1713656

  55. Wilson J, Farrington-Darby T, Cox G, Bye R, Hockey GRJ (2007) The railway as a socio-technical system: human factors at the heart of successful rail engineering. In: Proceedings of the institution of mechanical engineers, Part F: J Rail Rapid Transit 221(1):101–115. https://doi.org/10.1243/09544097jrrt78

    Article  Google Scholar 

  56. Zhang Y, Fang W, Er M-C, Wang J, Guo B-Y (2010) Analysis on fatigue risk of subway divers on shift (Chinese). Railway Trans Econ 32(4):90–94. https://doi.org/10.3969/j.issn.1003-1421.2010.04.023

    Article  Google Scholar 

  57. Zhao Y, Yue WJ (2017) Cognitive radio networks with multiple secondary users under two kinds of priority schemes: performance comparison and optimization. J Industr Manag Optimizat 13(3):1449–1466. https://doi.org/10.3934/jimo.2017001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Bei**g Municipality Grant L191018. The authors are very grateful to all the participants who contributed to the study. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weining Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Fang, W., Li, S., Wang, J. (2023). A Scheduling Plan Model for Metro Crew Incorporating Fatigue and Biological Rhythms. In: Wang, W., Wu, J., Jiang, X., Li, R., Zhang, H. (eds) Green Transportation and Low Carbon Mobility Safety. GITSS 2021. Lecture Notes in Electrical Engineering, vol 944. Springer, Singapore. https://doi.org/10.1007/978-981-19-5615-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5615-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5614-0

  • Online ISBN: 978-981-19-5615-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation