Manufacture of Plant Fiber Reinforced Composites

  • Chapter
  • First Online:
Plant Fiber Reinforced Composites

Abstract

Due to the unique chemical composition and hierarchical microstructure of plant fibers, the molding process of plant fiber reinforced composites (PFRCs) is different from that of man-made fiber reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanyong, F., Yawing, Z., ****, Y., et al.: Study on fiber surface modification of plant fibers/biodegradable plastic composites. China Plastics 25(10), 50 (2011)

    Google Scholar 

  2. Li, Y., Ma, H., Shen, Y.O., Li, Q., Zheng, Z.Y.: Effects of resin inside fiber lumen on the mechanical properties of sisal fiber reinforced composites. Compos. Sci. Technol. 108, 32–40 (2015)

    Article  CAS  Google Scholar 

  3. Zhuoyuan, Z.: Study on the Acoustic Properties of Natural Fiber-Reinforced Composites Based on Microstructures, Tongji University (2014).

    Google Scholar 

  4. Li, Y., Li, Q., Ma, H.: The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Compos. A Appl. Sci. Manuf. 72, 40–48 (2015)

    Article  CAS  Google Scholar 

  5. Liu, L., Zhang, B.M., Wang, D.F., et al.: Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73(3), 303–309 (2006)

    Article  Google Scholar 

  6. Koushyar, H., Alavi-Soltani, S., Minnie, B., et al.: Effects of variation in autoclave pressure, temperature, and vacuum-application time on porosity and mechanical properties of a carbon fiber/epoxy composite. J. Compos. Mater. 46(16), 1985–2004 (2012)

    Article  Google Scholar 

  7. Madsen, B., Thygesen, A., Lilholt, H.: Plant fiber composites-porosity and volumetric interaction. Compos. Sci. Technol. 67(7/8), 1584–1600 (2007)

    Article  CAS  Google Scholar 

  8. Liu, L., Zhang, B.M., Wang, D.F., et al.: Experimental characterization of porosity and interlaminar shear strength in polymeric matrix composites. Hangkong Cailiao Xuebao/J. Aeronaut. Mater. 26(4), 115–118 (2006)

    Google Scholar 

  9. Wielage, B., Lampke, T., Marx, G., et al.: Thermogravimetric and differential scanning calorimetric analysis of natural fibers and polypropylene. Thermochim Acta 337, 169–177 (1999)

    Article  CAS  Google Scholar 

  10. Shih, Y.F.: Mechanical and thermal properties of wastewater bamboo husk fiber reinforced epoxy composites. Mater. Sci. Eng. A 445, 289–295 (2007)

    Article  Google Scholar 

  11. De Rosa, I.M., Kenny, J.M., Puglia, D., et al.: Morphological, thermal, and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos. Sci. Technol. 70, 116–122 (2010)

    Article  Google Scholar 

  12. González, C., Myers, G.E.: Thermal degradation of wood fillers at the melt-processing temperatures of wood-plastic composites: effects on wood mechanical properties and production of voiatiles. Int. J. Polym. Mater. Polym. Biomater. 23(1–2), 67–85 (1993)

    Article  Google Scholar 

  13. Yanfeng, L., Jianwen, B., Yanliang, L. etc.: Effect of curing temperature on the performance of the castor fiber-enhanced composite material. J. Aeronaut. Mater. 32, 49–53 (2012).

    Google Scholar 

  14. Li, Q., Li, Y., Zhou, L.M.: Effect of processing temperature on the static and dynamic mechanical properties and failure mechanisms of flax fiber reinforced composites. Compos. Commun. 20, 100343 (2020)

    Article  Google Scholar 

  15. Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T., Waterhouse, G.I.N., Li, Y.: Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 65, 27–35 (2015)

    Article  CAS  Google Scholar 

  16. Gourier, C., Duigou, A.L., Bourmaud, A., et al.: Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Compos. A Appl. Sci. Manuf. 64, 159–166 (2014)

    Article  CAS  Google Scholar 

  17. **, W.: FTIR and XRD analysis of high temperature heat treatment wood. J. Bei**g Forestry Univ. S1, 104–107 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Li, Q. (2022). Manufacture of Plant Fiber Reinforced Composites. In: Plant Fiber Reinforced Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-5162-6_3

Download citation

Publish with us

Policies and ethics

Navigation