Morpho-Physiological, Biochemical, and Ultrastructural Modifications on Sugarcane to Prolonged Water Deficit

  • Chapter
  • First Online:
Agro-industrial Perspectives on Sugarcane Production under Environmental Stress

Abstract

Water stress occurs in most farming regions that lack proper irrigation systems and get insufficient moisture. Using biotechnological approaches, researchers could better understand the physiological and biochemical mechanisms that support a plant’s response to water stress, allowing them to produce drought-tolerant plants. Plants use a variety of mechanisms to cope with insufficient water supply, including variations in the expression of genes and the buildup of organic compounds to survive and grow effectively. According to biochemical investigations on the drought-tolerance mechanism, harmless micro compounds of suitable solute accumulate during a water shortage. The main goal of this chapter is to compile research innovations on stress-responsive genes and functional machinery subjected to water stress by discussing agronomic, physiological, ultrastructural modifications, and omic aspects of drought in sugarcane crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas S, Ahmad S, Sabir S, Shah A (2014) Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. J Soil Sci Plant Nutr 14:233–243

    Google Scholar 

  • Abdeeva I, Piruzian E, Abdeev R, Bruskin S (2012) Transgenic plants as a tool for plant functional genomics. INTECH Open Access Publisher, Rijeka

    Book  Google Scholar 

  • Altpeter F, Sandhu S (2010) Genetic transformation-biolistics. In: Davey MR, Anthony P (eds) Plant cell culture, essential methods. Wiley, Hoboken, NJ, pp 217–237

    Chapter  Google Scholar 

  • An Y, Liu L, Chen L, Wang L (2016) ALA inhibits ABA-induced stomatal closure via reducingH2O2 and Ca2+ levels in guard cells. Front Plant Sci 7:482. https://doi.org/10.3389/fpls.2016.00482

    Article  Google Scholar 

  • Andresen PA, Kaasen I, Styrvold OB, Boulnois G (1988) Molecular cloning, physical map** and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Microbiol 134:1737–1746

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan M-T, Yu S-M, Trujillo LE et al (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Sriuastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V et al (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Article  CAS  Google Scholar 

  • Azevedo RA, Carvalho RC, Cia MC, Gratão PL (2011) Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biol 4:42–51

    Article  CAS  Google Scholar 

  • Basnayake J, Jackson PAN, Inman-Bamber G, Lakshmanan P (2012) Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. J Exp Bot 63:6023–6033

    Article  CAS  Google Scholar 

  • Basnayake J, Jackson PAN, Inman-Bamber G, Lakshmanan P (2015) Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity. J Exp Bot 66:3945–3958

    Article  CAS  Google Scholar 

  • Bhaskara GB, Yang T-H, Verslues PE (2015) Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci 6:484. https://doi.org/10.3389/fpls.2015.00484

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Crop Pasture Sci 56:1159–1168

    Article  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P et al (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292

    Article  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  Google Scholar 

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  Google Scholar 

  • Chakravarthi M, Syamaladevi DP, Harunipriya P, Augustine SM, Subramonian N (2016) A novel PR10 promoter from Erianthus arundinaceus directs high constitutive transgene expression and is enhanced upon wounding in heterologous plant systems. Mol Biol Rep 43:17–30

    Article  CAS  Google Scholar 

  • Cha-um S, Kirdmane C (2008) Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (saccharum officinarum L.). Pak J Bot 40:2541–2552

    CAS  Google Scholar 

  • Cia MC, Guimaraes ACR, Medici LO, Chabregas SM, Azevedo RA (2012) Antioxidant responses to water deficit by drought-tolerant and sensitive sugarcane varieties. Ann Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. Nat Biotechnol 30:355–361

    CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  Google Scholar 

  • Da Graça J, Rodrigues F, Farias J, Oliveira M, Hoffmann-Campo C, Zingaretti S (2010) Physiological parameters in sugarcane cultivars submitted to water deficit. Braz So Plant Physiol 22:189–197

    Article  Google Scholar 

  • da Silva MD, Silva RLO, Costa Ferreira Neto JR, Guimarães ACR, Veiga DT et al (2013) Expression analysis of sugarcane aquaporin genes under water deficit. J Nucleic Acids 2013:14. https://doi.org/10.1155/2013/763945

    Article  CAS  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    Article  CAS  Google Scholar 

  • de Silva MA, da Silva JAG, Enciso J, Sharma V, Jifon J (2008) Yield components as indicators of drought tolerance of sugarcane. Sci Agric 65:620–627

    Article  Google Scholar 

  • Dhadi SR, Krom N, Ramakrishna W (2009) Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene 429:65–73

    Article  CAS  Google Scholar 

  • Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW (2014) Temporal and spatial control of gene expression in horticultural crops. Hortic Res 1:14047. https://doi.org/10.1038/hortres.2014.47

    Article  CAS  Google Scholar 

  • dos Santos CM, Silva MA (2015) Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat. Acta Physiol Plant 37:172. https://doi.org/10.1007/s11738-015-1935-3

    Article  CAS  Google Scholar 

  • Endres L, Silva JV, Ferreira VM, Barbosa GVS (2010) Photosynthesis and water relations in Brazilian sugarcane. Open Agric J 11:31–37

    Article  Google Scholar 

  • Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L et al (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 7:e46703. https://doi.org/10.1371/journal.pone.0046703

    Article  CAS  Google Scholar 

  • Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV et al (2017) Sugarcane water stress tolerance mechanisms and its implications on develo** biotechnology solutions. Front Plant Sci 8:1–18

    Article  Google Scholar 

  • Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS et al (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237:783–798

    Article  CAS  Google Scholar 

  • Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58. https://doi.org/10.3389/fpls.2015.00058

    Article  Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I et al (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • González L, González-Vilar M (2003) Determination of relative water content. In: Roger MR (ed) Handbook of plant ecophysiology techniques, pp 207–212

    Chapter  Google Scholar 

  • Graça JP, Rodrigues FA, Farias JRB, Oliveira MCN, Hoffmann-Campo CB, Zingaretti SM (2010) Physiological parameters in sugarcane cultivars submitted to water deficit. Braz J Plant Physiol 22:189–197

    Article  Google Scholar 

  • Groenewald JH, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92

    Article  CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    Article  CAS  Google Scholar 

  • Guo J, Ling H, Wu Q, Xu L, Que Y (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042. https://doi.org/10.1038/srep07042

    Article  CAS  Google Scholar 

  • Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre J-F, Louvet R et al (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GMQ, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GRA, Crivellari AC, Santos WD, Souza AP, Hoshino AA, Carrer H, Souza AP, Garcia AAF, Buckeridge MS, Menossi M, Van Sluys MA, Souza GM (2010) The biotechnology roadmap for sugarcane improvement. Tropical Plant Biol 3:75–87

    Article  CAS  Google Scholar 

  • Hu H, **ong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Biol 47:377–403

    Article  CAS  Google Scholar 

  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crops Res 92:185–202

    Article  Google Scholar 

  • Inman-Bamber N, Lakshmanan P, Park S (2012) Sugarcane for waterlimited environments: theoretical assessment of suitable traits. Field Crops Res 134:95–104

    Article  Google Scholar 

  • Iskandar HM, Casu RE, Fletcher AT, Schmidt S, Xu J, Maclean DJ et al (2011) Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol 11:12. https://doi.org/10.1186/1471-2229

    Article  CAS  Google Scholar 

  • Jangpromma N, Thammasirirak S, Jaisil P, Songsri P (2012) Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (‘Saccharum officinarum’ L.). Aust J Crop Sci 6:1298

    Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  Google Scholar 

  • Khan A, Sovero V, Gemenet D (2016) Genome-assisted breeding for drought resistance. Curr Genomics 17:330–342

    Article  CAS  Google Scholar 

  • Kondou Y, Higuchi M, Matsui M (2010) High-throughput characterization of plant gene functions by using gain-of function technology. Annu Rev Plant Biol 61:373–393

    Article  CAS  Google Scholar 

  • Kumar T, Khan MR, Abbas Z, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56:199–209

    Article  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CL, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Landfald B, Strøm AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855

    Article  CAS  Google Scholar 

  • Last D, Brettell R, Chamberlain D, Chaudhury A, Larkin P, Marsh E et al (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    Article  CAS  Google Scholar 

  • Li C-N, Srivastava M-K, Nong Q, Yang L-T, Li Y-R (2013) Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cisepoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.). Genes Genomics 35:101–109

    Article  CAS  Google Scholar 

  • Li C, Nong Q, Solanki MK, Liang Q, **e J, Liu X et al (2016) Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci Rep 6:25698. https://doi.org/10.1038/srep25698

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  Google Scholar 

  • Ling H, Wu Q, Guo J, Xu L, Que Y (2014) Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One 9:e97469. https://doi.org/10.1371/journal.pone.0097469

    Article  CAS  Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187

    Article  CAS  Google Scholar 

  • Machado RS, Ribeiro RV, Marchiori PER, Machado DFSP, Machado EC, de Landell MGA (2009) Biometric and physiological responses to water deficit in sugarcane at different phenological stages. Pesq Agro Bras 44:1575–1582

    Article  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829

    Article  CAS  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Molina MG (2002) Environmental constraints on agricultural growth in 19th century Granada (Southern Spain). Ecol Econ 41:257–270

    Article  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL et al (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. X Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352. https://doi.org/10.1007/BF00197534

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  Google Scholar 

  • Nelson N (1994) Energizing porters by proton-motive force. J Exp Biol 196:7–13

    Article  CAS  Google Scholar 

  • Pagariya MC, Devarumath RM, Kawar PG (2012) Biochemical characterization and identification of differentially expressed candidate genes in salt stressed sugarcane. Plant Sci 184:1–13

    Article  CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vêncio RZ, Felix JM, Branco DS, Waclawovsky AJ et al (2009) Sugarcane genes associated with sucrose content. BMC Genomics 10:120. https://doi.org/10.1186/1471-2164-10-120

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  Google Scholar 

  • Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, de Albuquerque Melo Filho P, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49

    Article  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize: glycine betaine improves maize drought tolerance. Plant Biotechnol J 2:477–486

    Article  CAS  Google Scholar 

  • Ramesh P (2000) Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 185:83–89

    Article  Google Scholar 

  • Ramiro DA, Melotto-Passarin DM, Barbosa MA, Santos F, Gomez SGP, Massola Júnior NS et al (2016) Expression of Arabidopsis Bax inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnol J 14:1826–1837

    Article  CAS  Google Scholar 

  • Raza G, Ali K, Ashraf MY, Mansoor S, Javid M, Asad S (2016) Overexpression of an H+-PPase gene from Arabidopsis in sugarcane improves drought tolerance, plant growth, and photosynthetic responses. Turk J Biol 40:109–119

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34. https://doi.org/10.3390/plants8020034

    Article  CAS  Google Scholar 

  • Reis R, da Cunha B, Martins P, Martins M, Alekcevetch J, Chalfun A et al (2014) Induced over-expression of ArDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221:59–68. https://doi.org/10.1016/j.plantsci.2014.02.003

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann Rev Plant Biol 44:357–384

    Article  CAS  Google Scholar 

  • Ribeiro RV, Machado RS, Machado EC, Machado DFSP, Magalhaes Filho JR, Landell MGA (2013) Revealing drought resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Exp Agric 49:212–224

    Article  Google Scholar 

  • Ripley B, Frole K, Gilbert M (2010) Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses. Ann Bot 105:493–503

    Article  CAS  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama MY, Vêncio RZ, Vicentini R, Duarte RD et al (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8:71. https://doi.org/10.1186/1471-2164-8-71

    Article  CAS  Google Scholar 

  • Rodrigues FA, de Laia ML, Zingaretti SM (2009) Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci 176:286–302

    Article  CAS  Google Scholar 

  • Rodrigues FA, Da Graça JP, De Laia ML, Nhani-Jr A, Galbiati JA, Ferro MIT et al (2011) Sugarcane genes differentially expressed during water deficit. Biol Plant 55:43–53

    Article  CAS  Google Scholar 

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163

    Article  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  Google Scholar 

  • Sawitri WD (2012) Identification of Chinese cabbage sentrin as a suppressor of bax-induced cell death in yeast. J Microbiol Biotechnol 22:600–606

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stress response. Plant Physiol 115:327. https://doi.org/10.2307/4277903

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2006) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  Google Scholar 

  • Silva MA, Jifon JL, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Silva MDA, Goncalves da Silva JA, Enciso J, Sharma V, Jifon J (2008) Yield components as indicators of drought tolerance of sugarcane. Sci Agric 65:620–627

    Article  Google Scholar 

  • Silva MDA, Jifon JL, Da Silva JAG, Dos Santos CM, Sharma V (2014) Relationships between physiological traits and productivity of sugarcane in response to water deficit. J Agric Sci 152:104–118

    Article  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426

    Article  CAS  Google Scholar 

  • Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S et al (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214

    Article  CAS  Google Scholar 

  • Skorzynska-Polit E (2007) Lipid peroxidation in plant cells, its physiological role and changes under heavy metal stress. Acta Soc Bot Pol 76:49–54

    Article  CAS  Google Scholar 

  • Smit MA, Singels S (2006) The response of sugarcane canopy development to water stress. Field Crops Res 98:91–97

    Article  Google Scholar 

  • Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Res 92:169–183

    Article  Google Scholar 

  • Soares RAB, Oliveira PFM, Cardoso HR, Vasconcelos ACM, Landell MGA, Rosenfeld U (2004) Efeito da irrigação sobre o desenvolvimento e a produtividade de duas variedades de cana-de-açúcar colhidas em início de safra. STAB Açúcar, Álcool e Subprodutos 22:38–41

    Google Scholar 

  • Songsri P, Jogloy S, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook CC (2008) Root distribution of drought-resistant peanut genotypes in response to drought. J Agron Crop Sci 194:92–103

    Article  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L et al (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9:e84426. https://doi.org/10.1371/journal.pone.0084426

    Article  CAS  Google Scholar 

  • Sugiharto B, Sakakibara H, Sugiyama T (1997) Differential expression of two genes for sucrose-phosphate synthase in sugarcane: molecular cloning of the cDNAs and comparative analysis of gene expression. Plant Cell Physiol 38:961–965

    Article  CAS  Google Scholar 

  • Sugiharto B, Ermawati N, Mori H, Aoki K, Yonekura-Sakakibara K, Yamaya T et al (2002) Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant Cell Physiol 43:350–354

    Article  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  CAS  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  CAS  Google Scholar 

  • Tezara W, Driscoll S, Lawlor DW (2008) Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46:127–134

    Article  CAS  Google Scholar 

  • Thiebaut F, Grativol C, Tanurdzic M, Carnavale-Bottino M, Vieira T, Motta MR et al (2014) Differential sRNA regulation in leaves and roots of sugarcane under water depletion. PLoS One 9:e93822. https://doi.org/10.1371/journal.pone.0093822

    Article  CAS  Google Scholar 

  • Vantini JS, Dedemo GC, Jovino Gimenez DF, Fonseca LF, Tezza RI, Mutton MA et al (2015) Differential gene expression in drought-tolerant sugarcane roots. Genet Mol Res 14:7196–7207

    Article  CAS  Google Scholar 

  • Verma KK, Liu XH, Wu KC, Singh RK, Song QQ, Malviya MK, Song XP, Singh P, Verma CL, Li YR (2020a) The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. SILICON 12:1355–1367

    Article  CAS  Google Scholar 

  • Verma KK, Singh P, Song XP, Malviya MK, Singh RK, Chen GL, Solomon S, Li YR (2020b) Mitigating climate change for sugarcane improvement: role of silicon in alleviating abiotic stresses. Sugar Tech 22:741–749

    Article  CAS  Google Scholar 

  • Verma KK, Song XP, Tian DD, Singh M, Verma CL, Rajput VD, Singh RK, Sharma A, Singh P, Malviya MK, Li YR (2021a) Investigation of defensive role of silicon during drought stress induced by irrigation capacity in sugarcane: physiological and biochemical characteristics. ACS Omega 6:19811–19821

    Article  CAS  Google Scholar 

  • Verma KK, Song XP, Verma CL, Chen ZL, Rajput VD, Wu KC, Liao F, Chen GL, Li YR (2021b) Functional relationship between photosynthetic leaf gas exchange in response to silicon application and water stress mitigation in sugarcane. Biol Res 54:15. https://doi.org/10.1186/s40659-021-00338-2

    Article  CAS  Google Scholar 

  • Verma KK, Song XP, Verma CL, Malviya MK, Guo DJ, Rajput VD, Sharma A, Wei KJ, Chen GL, Solomon S, Li YR (2021c) Predication of photosynthetic leaf gas exchange of sugarcane (Saccharum spp.) leaves in response to leaf positions to foliar spray of potassium salt of active phosphorus under limited water irrigation. ACS Omega 6:2396–2409

    Article  CAS  Google Scholar 

  • Verma KK, Song XP, Zeng Y, Guo DJ, Sing M, Rajput VD, Malviya MK, Wei KJ, Sharma A, Li DP, Chen GL, Li YR (2021d) Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiol Biochem 166:582–592

    Article  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109. https://doi.org/10.1007/s10535-007-0021-0

    Article  CAS  Google Scholar 

  • Walter A, Galdos M, Scarpare F, Seabra J, Leal M, Cunha M et al (2013) Brazilian sugarcane ethanol: developments so far and challenges for the future. WENE 3:70–92

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  Google Scholar 

  • Wang H, Siopongco J, Wade LJ, Yamauchi A (2009) Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot 65:338–344

    Article  Google Scholar 

  • Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. https://doi.org/10.3389/fpls.2016.00067

    Article  Google Scholar 

  • Yang Y, Fu Z, Su Y, Zhang X, Li G, Guo J et al (2014) A cytosolic glucose-6-phosphate dehydrogenase gene, ScG6PDH, plays a positive role in response to various abiotic stresses in sugarcane. Sci Rep 4:7090. https://doi.org/10.1038/srep07090

    Article  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  Google Scholar 

  • Zhangsun D, Luo S, Chen R, Tang K (2007) Improved Agrobacterium mediated genetic transformation of GNA transgenic sugarcane. Biologia 62:386–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China, for providing the necessary facilities for this study. This research was financially supported by the Guangxi Innovation Teams of Modern Agriculture Technology (nycytxgxcxtd-2021-03), Youth Program of National Natural Science Foundation of China (31901594), The National Natural Science Foundation of China (31760415), Guangxi Natural Science Foundation (2021GXNSFAA220022), Fund of Guangxi Academy of Agricultural Sciences (2021YT011) and Guangxi Key Laboratory of Sugarcane Genetic Improvement Project (21-238-16-K-04-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **u-Peng Song or Yang-Rui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, K.K. et al. (2022). Morpho-Physiological, Biochemical, and Ultrastructural Modifications on Sugarcane to Prolonged Water Deficit. In: Verma, K.K., Song, XP., Rajput, V.D., Solomon, S., Li, YR., Rao, G.P. (eds) Agro-industrial Perspectives on Sugarcane Production under Environmental Stress. Springer, Singapore. https://doi.org/10.1007/978-981-19-3955-6_8

Download citation

Publish with us

Policies and ethics

Navigation