High Altitude-Induced Oxidative Stress, Rheumatoid Arthritis, and Proteomic Alteration

  • Chapter
  • First Online:
High Altitude Sickness – Solutions from Genomics, Proteomics and Antioxidant Interventions

Abstract

Oxidative stress is the disruption in the equilibrium between the production of pro-oxidants such as peroxynitrite (ONOO), reactive oxygen species (ROS), reactive nitrogen species (RNS), and superoxide anion (.O2), etc. and antioxidants such as catalase, dismutase, etc. Two major sources of oxidative stress are endogenous and exogenous. Enhanced hyperoxia or aerobic metabolism is assumed to have high levels of reactive oxygen and nitrogen species (RONS) that have a high ability to oxidative damage to the lipids, DNA, and protein. High altitude increased the generation of ROS or reduced antioxidants that are the major causes of oxidative damage to macromolecules. Excess supply of oxygen can increase mitochondrial ROS production. In hypoxia, the mitochondrial electron transport system causes the generation of ROS. Short- and long-term exposure to hypoxia can enhance the level of oxidative stress. Rheumatoid arthritis (RA) is a chronic autoimmune condition that can cause joint damage and deterioration of the bone. Oxidative stress in RA includes various causes such as the irregular distribution of adhesive molecules, autophagy induction, and synoviocyte resistance for apoptosis. Several hours of exposure to higher humidity and reduced pressure have a major worse effect on RA. In vivo, ex vivo, and in-cell oxidative stress can be calculated using various instruments such as flow cytometry, fluorescence microplate reader, and confocal microscopy, etc. Increased altitude is related to physiological responses to hypobaric hypoxia stress by an increment in oxygen supply and usage of oxygen for tissue via metabolic modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-LO:

5-Lipoxygenase

AGE:

Advanced glycation end product

AOPP:

Advanced oxidation of protein products

CL-HPLC:

Chemiluminescence-high performance liquid chromatography

CPT1B:

Carnitine palmitoyltransferase 1

CT:

3-Chlorotyrosine

CYP2E1:

Cytochrome P450 2E1

DAF-2DA:

Diaminofluorescein diacetate

DCF:

Dichlorofluorescein

DCFDA:

Dichlorofluorescein diacetate

DHR:

Dihydrorhodamine 123

DPPP:

Diphenyl-1-pyrenylphosphine

ESR:

Electron spin resonance

FAO:

Fatty acid oxidation

GSH:

Glutathione

HIF:

Hypoxia Induce factor

IgG:

Immunoglobulin

IR:

Ionization Radiation

LDH:

Lactate Dehydrogenase

MBL:

Mannose-Binding Lectin

MDA:

Malondialdehyde

NO:

Nitric oxide

NQO:

Quinine oxidoreductase

OA:

Osteoarthritis

PC:

Protein carbonyls

PCOOH:

Phosphatidylcholine

PEOOH:

Phosphatidylethanolamine

PPARα:

Peroxisome proliferator-activated receptor α

RA:

Rheumatoid Arthritis

ROS:

Reactive Oxygen Species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

TLRs:

Toll-like receptors

TRX:

Thioredoxin

References

  • Ameziane-El-Hassani R, Talbot M, Dos Santos MCDS, Al Ghuzlan A, Hartl D, Bidart J-M et al (2015) NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci 112(16):5051–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashmore T, Fernandez BO, Evans CE, Huang Y, Branco-Price C, Griffin JL et al (2014) Suppression of erythropoiesis by dietary nitrate. FASEB J 29(3):1102–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Askew E (2002) Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180(2):107–119

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Davies B, Young IS (2001) Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond) 101:465–475

    Article  CAS  Google Scholar 

  • Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci 104(suppl 1):8655–8660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beall C, Laskowski D, Strohl KP, Soria R, Villena M, Vargas E, Alarcon AM, Gonzales C, Erzurum SC (2001) Pulmonary nitric oxide in mountain dwellers. Nature 414:411–412

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ, Khramtsov V, Fujii H, Clanton TL (2001) Unique in vivo applications of spin traps. Free Radic Biol Med 30(5):489–499

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma JW, Jacobs JW (2000) Hormonal preservation of bone in rheumatoid arthritis. Rheum Dis Clin 26(4):897–910

    Article  CAS  Google Scholar 

  • Busch T, Bartsch P, Pappert D, Grunig E, Hildebrandt W, Elser H et al (2001) Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med 163(2):368–373

    Article  CAS  PubMed  Google Scholar 

  • Buxser SE, Sawada G, Raub TJ (1999) Analytical and numerical techniques for evaluation of free radical damage in cultured cells using imaging cytometry and fluorescent indicators. In: Methods in enzymology. Elsevier, Amsterdam, pp 256–275

    Google Scholar 

  • Cheeseman K, Slater T (1993) An introduction to free radical biochemistry. Br Med Bull 49(3):481–493

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Morand P, Levillain P, Lemonnier A (1991) Improved fluorometric determination of malonaldehyde. Clin Chem 37(7):1273–1275

    Article  CAS  PubMed  Google Scholar 

  • Dalal V, Biswas S (2019) Nanoparticle-mediated oxidative stress monitoring and role of nanoparticle for treatment of inflammatory diseases. In: Nanotechnology in modern animal biotechnology. Elsevier, Amsterdam, pp 97–112

    Chapter  Google Scholar 

  • Dalal V, Sharma NK, Biswas S (2017) Oxidative stress: diagnostic methods and application in medical science. In: Oxidative stress: diagnostic methods and applications in medical science. Springer, Berlin, pp 23–45

    Chapter  Google Scholar 

  • Damij N, Levnajić Z, Skrt VR, Suklan J (2015) What motivates us for work? Intricate web of factors beyond money and prestige. PLoS One 10(7):e0132641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33(11):1557–1564

    Article  PubMed  Google Scholar 

  • Debevec T, Pialoux V, Mekjavic IB, Eiken O, Mury P, Millet GP (2014) Moderate exercise blunts oxidative stress induced by normobaric hypoxic confinement. Med Sci Sports Exerc 46(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Diehl R, Opas E, Rands E, Vickers P, Evans J et al (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343(6255):282

    Article  CAS  PubMed  Google Scholar 

  • Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158(2–3):128–131

    Article  CAS  PubMed  Google Scholar 

  • Edström G (1944) Can rheumatic infection be influenced by an artificial tropical climate? Acta Med Scand 117(3–4):376–414

    Google Scholar 

  • Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37(2):112–119

    Article  CAS  PubMed  Google Scholar 

  • Erzurum S, Ghosh S, Janocha A, Xu W, Bauer S, Bryan N et al (2007) Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci 104(45):17593–17598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagerberg P (2018) Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab 28(4):385–402

    Article  CAS  PubMed  Google Scholar 

  • Faiss R, Pialoux V, Sartori C, Faes C, Dériaz O, Millet GP (2013) Ventilation, oxidative stress, and nitric oxide in hypobaric versus normobaric hypoxia. Med Sci Sports Exerc 45(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2ṡ−. Free Radic Biol Med 15(4):447–451

    Article  CAS  PubMed  Google Scholar 

  • Fearnley G, Chakrabarti R, Evans J (1966) Fibrinolytic treatment of rheumatoid arthritis with phenformin plus ethyloestrenol. Lancet 288(7467):757–761

    Article  Google Scholar 

  • Gambhir JK, Lali P, Jain AK (1997) Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 30(4):351–355

    Article  CAS  PubMed  Google Scholar 

  • Ge R-L, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD et al (2012) Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab 106(2):244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilde A, Van Bilsen M (2003) Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle. Acta Physiol Scand 178(4):425–434

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez NC, Wood JG (2001) Leukocyte-endothelial interactions in environmental hypoxia. In: Hypoxia. Springer, Berlin, pp 39–60

    Chapter  Google Scholar 

  • Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci 91(23):11012–11016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SZ, Gheita TA, Kenawy SA, Fahim AT, El-Sorougy IM, Abdou MS (2011) Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int J Rheum Dis 14(4):325–331

    Article  PubMed  Google Scholar 

  • Haywood RM, Wardman P, Gault DT, Linge C (1999) Ruby laser irradiation (694 nm) of human skin biopsies: assessment by electron spin resonance spectroscopy of free radical production and oxidative stress during laser depilation. Photochem Photobiol 70(3):348–352

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsson T, Linnarsson D (2009) Lower exhaled nitric oxide in hypobaric than in normobaric acute hypoxia. Respir Physiol Neurobiol 169(1):74–77

    Article  CAS  PubMed  Google Scholar 

  • Holbrook W (1960) Climate and the rheumatic diseases. In: Hollander JL (ed) Arthritis and allied conditions. Henry Kimpton, London, pp 577–581

    Google Scholar 

  • Holden J, Stone C, Clark C, Brown W, Nickles R, Stanley C et al (1995) Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol 79(1):222–228

    Article  CAS  PubMed  Google Scholar 

  • Hollander JL, Yeostros SJ (1963) The effect of simultaneous variations of humidity and barometric pressure on arthritis. Bull Am Meteorol Soc 44(8):489–494

    Article  Google Scholar 

  • Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZ et al (2017) Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci 114(24):6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingelman-Sundberg M, Kaur H, Terelius Y, Persson J, Halliwell B (1991) Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2, 3-dihydroxybenzoate unless hydroxyl radical formation is permitted. Biochem J 276(3):753–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP (1999) Detection of reactive nitrogen species using 2, 7-dichlorodihydrfluorescein and dihydrorhodamine 123. In: Methods in enzymology. Elsevier, Amsterdam, pp 367–373

    Google Scholar 

  • Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild A-K, Lundby C (2012) Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J 26(12):5192–5200

    Article  CAS  PubMed  Google Scholar 

  • Jikimoto T, Nishikubo Y, Koshiba M, Kanagawa S, Morinobu S, Morinobu A et al (2002) Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38(10):765–772

    Article  CAS  PubMed  Google Scholar 

  • Joanny P, Steinberg J, Robach P, Richalet J, Gortan C, Gardette B et al (2001) Operation Everest III (Comex'97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation 49(3):307–314

    Article  CAS  PubMed  Google Scholar 

  • Joshi YB, Praticò D (2015) The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Front Cell Neurosci 8:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, O'Brien PJ (1995) Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state. Biochim Biophys Acta Mol Cell Res 1269(2):153–161

    Article  Google Scholar 

  • Kim J-w, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Bansal A, Thomas P, Sairam M, Sharma S, Mongia S et al (1999) Biochemical and immunological changes on oral glutamate feeding in male albino rats. Int J Biometeorol 42(4):201–204

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Ghosh P, Datta S, Ghosh A, Chattopadhyay S, Chatterjee M (2012) Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis. Free Radic Res 46(12):1482–1489

    Article  CAS  PubMed  Google Scholar 

  • Kurien BT, Scofield RH (2008) Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev 7(7):567–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry WD, Cotter TG (2014) ROS signalling, NADPH oxidases and cancer. Portland Press, London

    Book  Google Scholar 

  • Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A (2014) TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J Immunol 192(11):5373–5381

    Article  CAS  PubMed  Google Scholar 

  • Lepoivre M, Flaman J, bobe P, Lemaire G, Henry Y. (1994) Quenching of the tyrosil free radical of ribonucleotide reductase by nitric oxide. J Biol Chem 269:21891–21897

    Article  CAS  PubMed  Google Scholar 

  • Lewis DFV (2002) Oxidative stress: the role of cytochromes P450 in oxygen activation. J Chem Technol Biotechnol 77(10):1095–1100

    Article  CAS  Google Scholar 

  • Liu L, Leech JA, Urch RB, Silverman FS (1997) In vivo salicylate hydroxylation: a potential biomarker for assessing acute ozone exposure and effects in humans. Am J Respir Crit Care Med 156(5):1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787

    Article  CAS  PubMed  Google Scholar 

  • Magalhães J, Ascensão A, Soares JM, Ferreira R, Neuparth MJ, Marques F et al (2005) Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol 99(4):1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Mapp P, Grootveld M, Blake D (1995) Hypoxia, oxidative stress and rheumatoid arthritis. Br Med Bull 51(2):419–436

    Article  CAS  PubMed  Google Scholar 

  • Messner KR, Imlay JA (2002) Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277(45):42563–42571

    Article  CAS  PubMed  Google Scholar 

  • Migita K, Yamasaki S, Kita M, Ida H, Shibatomi K, Kawakami A et al (2001) Nitric oxide protects cultured rheumatoid synovial cells from Fas-induced apoptosis by inhibiting caspase-3. Immunology 103(3):362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazawa T, Yasuda K, Fujimoto K (1987) Chemiluminescence-high performance liquid chromatography of phosphatidylcholine hydroperoxide. Anal Lett 20(6):915–925

    Article  CAS  Google Scholar 

  • Mohanraj P, Merola AJ, Wright VP, Clanton TL (1998) Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol 84(6):1960–1966

    Article  CAS  PubMed  Google Scholar 

  • Møller P, Loft S, Lundby C, Olsen NV (2001) Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J 15(7):1181–1186

    Article  PubMed  Google Scholar 

  • Nakanishi K, Tajima F, Nakamura A, Yagura S, Ookawara T, Yamashita H et al (1995) Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol 489(3):869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newkirk MM, Goldbach-Mansky R, Lee J, Hoxworth J, McCoy A, Yarboro C et al (2003) Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 5(2):R82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordgren M, Fransen M (2014) Peroxisomal metabolism and oxidative stress. Biochimie 98:56–62

    Article  CAS  PubMed  Google Scholar 

  • Nzeusseu Toukap A, Delporte C, Noyon C, Franck T, Rousseau A, Serteyn D et al (2014) Myeloperoxidase and its products in synovial fluid of patients with treated or untreated rheumatoid arthritis. Free Radic Res 48(4):461–465

    Article  CAS  PubMed  Google Scholar 

  • Owen R, Giacosa A, Hull W, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36(10):1235–1247

    Article  CAS  PubMed  Google Scholar 

  • Ozkan Y, Yardým-Akaydýn S, Sepici A, Keskin E, Sepici V, Simsek B (2007) Oxidative status in rheumatoid arthritis. Clin Rheumatol 26(1):64–68

    Article  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197

    Article  CAS  PubMed  Google Scholar 

  • Peacock AJ (1998) Oxygen at high altitude. BMJ 317(7165):1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiñonez-Flores CM, González-Chávez SA, Del Río ND, Pacheco-Tena C (2016) Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. Biomed Res Int 2016:6097417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radak Z, Lee K, Choi W, Sunoo S, Kizaki T, Oh-Ishi S et al (1994) Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. Eur J Appl Physiol Occup Physiol 69(5):392–395

    Article  CAS  PubMed  Google Scholar 

  • Radák Z, Asano K, Lee K-C, Ohno H, Nakamura A, Nakamoto H et al (1997) High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats. Free Radic Biol Med 22(6):1109–1114

    Article  PubMed  Google Scholar 

  • Radak Z, Nakamura A, Nakamoto H, Asano K, Ohno H, Goto S (1998) A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Pflugers Arch 435(3):439–441

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Taylor AW, Ohno H, Goto S (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    CAS  PubMed  Google Scholar 

  • Ribon A, Pialoux V, Saugy J, Rupp T, Faiss R, Debevec T et al (2016) Exposure to hypobaric hypoxia results in higher oxidative stress compared to normobaric hypoxia. Respir Physiol Neurobiol 223:23–27

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Gopinathan V (1995) Oxygen toxicity, free radicals and antioxidants in human disease: biochemical implications in atherosclerosis and the problems of premature neonates. Essays Biochem 29:39

    CAS  PubMed  Google Scholar 

  • Robertson G, Leclercq I, Farrell GC II (2001) Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 281(5):G1135–G11G9

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Saha P, Mandal G, Mukhopadhyay D, Roy S, Singh SK et al (2011) Monitoring of intracellular nitric oxide in leishmaniasis: its applicability in patients with visceral leishmaniasis. Cytometry A 79(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Savourey G, Launay JC, Besnard Y, Guinet AL, Travers SP (2003) Normo-and hypobaric hypoxia: are there any physiological differences. Eur J Appl Physiol 89:122–126

    Article  PubMed  Google Scholar 

  • Schmidt MC, Askew E, Roberts DE, Prior RL, Ensign W Jr, Hesslink RE Jr (2002) Oxidative stress in humans training in a cold, moderate altitude environment and their response to a phytochemical antioxidant supplement. Wilderness Environ Med 13(2):94–105

    Article  PubMed  Google Scholar 

  • Semenza GL, Roth PH, Fang H-M, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763

    Article  CAS  PubMed  Google Scholar 

  • Serrano J, Encinas JM, Salas E, Fernandez AP, Castro-Blanco S, Fernández-Vizarra P et al (2003) Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Res 976(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Simonson T, Yang Y, Huff C, Yun H, Qin G, Witherspoon D, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–660

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Chohan I, Lal M, Khanna P, Srivastava M, Nanda R et al (1977) Effects of high altitude stay on the incidence of common diseases in man. Int J Biometeorol 21(2):93–122

    Article  CAS  PubMed  Google Scholar 

  • Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC et al (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 51(10):1796–1803

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Subudhi AW, Jacobs KA, Hagobian TA, Fattor JA, Fulco CS, Muza SR et al (2004) Antioxidant supplementation does not attenuate oxidative stress at high altitude. Aviat Space Environ Med 75(10):881–888

    CAS  PubMed  Google Scholar 

  • Takahashi M, Shibata M, Niki E (2001) Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic Biol Med 31(2):164–174

    Article  CAS  PubMed  Google Scholar 

  • Tetik S, Ahmad S, Alturfan AA, Fresko I, Disbudak M, Sahin Y et al (2010) Determination of oxidant stress in plasma of rheumatoid arthritis and primary osteoarthritis patients. Indian J Biochem Biophys 47:353–358

    CAS  PubMed  Google Scholar 

  • Walwadkar S, Suryakar A, Katkam R, Kumbar K, Ankush R (2006) Oxidative stress and calcium-phosphorus levels in rheumatoid arthritis. Indian J Clin Biochem 21(2):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O et al (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu P, Yao J-F, Zhang Y-G, Hou W-k, Lu S-M (2013) Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res 62(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Yu M, Fu J, Bao W, Wang D, Hao L et al (2014) Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food Chem Toxicol 64:383–396

    Article  CAS  PubMed  Google Scholar 

  • Zahlten J, Kim Y-J, Doehn J-M, Pribyl T, Hocke AC, García P et al (2014) Streptococcus pneumoniae–induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211(11):1822–1830

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34(11):1359–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarika Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalal, V., Singh, V., Biswas, S. (2022). High Altitude-Induced Oxidative Stress, Rheumatoid Arthritis, and Proteomic Alteration. In: Sharma, N.K., Arya, A. (eds) High Altitude Sickness – Solutions from Genomics, Proteomics and Antioxidant Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-19-1008-1_4

Download citation

Publish with us

Policies and ethics

Navigation