Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 864))

  • 1093 Accesses

Abstract

In the electric railway system, catenary support components (CSCs) are critical elements that sustain the catenary system’s contact line and messenger. Precise location and identification of component types are vital to subsequent troubleshooting. There are many types of CSCs with muti-scales, and previous work could not effectively deal with them. In this study, we present a novel positioning strategy for accurately locating CSCs. Firstly, we use a transformer framework to extract detailed component features. Secondly, we use FPN to fuse multiscale features on the feature map. Following that, we trained a detector with several detection heads, gradually increasing the threshold of the detection heads to improve detection accuracy. In the experiment, the adopted ST has a higher detection accuracy for CSCs when compared with several current competitive methods. Finally, we discussed the current status and prospects of deep learning for CSCs positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, Z., Liu, Z., Zhang, G., et al.: Overview of non-contact image detection technology for pantograph-catenary monitoring. J. China Railw. Soc. 35(6), 40–47 (2013)

    Google Scholar 

  2. Gibert, X., Patel, V.M., Chellappa, R.: Robust fastener detection for autonomous visual railway track inspection. In: Proceedings of IEEE Winter Conference Applications Computer Vision, Waikoloa, HI, USA, pp. 694–701 (2015). https://doi.org/10.1109/WACV.2015.98

  3. Han, Y., Liu, Z., Geng, X., et al.: Fracture detection of ear pieces in catenary support devices of high-speed railway based on HOG features and two-dimensional Gabor transform. J. China Railw. Soc. 39(2), 52–57 (2017)

    Google Scholar 

  4. Cho, C.J., Ko, H.: Video-based dynamic stagger measurement of railway overhead power lines using rotation-invariant feature matching. IEEE Trans. Intell. Transp. Syst. 16(3), 1294–1304 (2015)

    Article  Google Scholar 

  5. Han, Y., Liu, Z., Lee, D.-J., et al.: High-speed railway rod-insulator detection using segment clustering and deformable part models. In: IEEE International Conference on Image Processing (ICIP) (2016)

    Google Scholar 

  6. Hao, F., Feng, Z., **e, F., et al.: Automatic fastener classification and defect detection in vision-based railway inspection systems. IEEE Trans. Instrum. Measur. 63(4), 877–888 (2014)

    Article  Google Scholar 

  7. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: Single shot multi-box detector, ar**v preprint ar**v:1512.02325 (2015)

  9. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  10. Kim, K.-H., Cheon, Y., Hong, S., et al.: PVANET: deep but lightweight neural networks for real-time object detection. ar**v preprint ar**v:1608.08021 (2016)

  11. Zhong, J., Liu, Z., Han, Z., Han, Y., Zhang, W.: A CNN-based defect inspection method for catenary split pins in high-speed railway. IEEE Trans. Instrum. Meas. 68(8), 2849–2860 (2019)

    Article  Google Scholar 

  12. Liu, Z., et al.: Location and fault detection of catenary support components based on deep learning. In: Proceedings of IEEE International Instrumentation Measurement Technology Conference (IMTC), Houston, TX, USA, May 2018, pp. 1–6 (2018)

    Google Scholar 

  13. Han, Y., Liu, Z., Lyu, Y., Liu, K., Li, C., Zhang, W.: Deep learning based visual ensemble method for high-speed railway catenary clevis fracture detection. Neurocomputing 396, 556–568 (2019)

    Article  Google Scholar 

  14. Liu, Z., Liu, K., Zhong, J., Han, Z., Zhang, W.: A high-precision positioning approach for catenary support components with multiscale difference. IEEE Trans. Instrum. Meas. 69(3), 700–711 (2020)

    Article  Google Scholar 

  15. Li, Y., Han, Z., Liu, Z., et al.: A multilevel feature and structure prior information-based positioning approach for catenary support components. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  16. Liu, W., Liu, Z., Núñez, A., Han, Z.: Unified deep learning architecture for the detection of all catenary support components. IEEE Access 8, 17049–17059 (2020)

    Article  Google Scholar 

  17. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. ar**v preprint ar**v:2103.14030 (2021)

  18. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  19. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  20. Liu, W., et al.: Multi-objective performance evaluation of the detection of catenary support components using DCNNs. In: Proceedings15th IFAC Symposium Control Transportation System (CTS), pp. 98–105 (2018)

    Google Scholar 

  21. Lin, Tsung-Yi., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Guo, W., Zhong, J., Han, Z., Liu, Z. (2022). Swin Transformer-Based Positioning Methodology for Catenary Support Components in High-Speed Railway. In: Jia, L., Qin, Y., Liang, J., Liu, Z., Diao, L., An, M. (eds) Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021. EITRT 2021. Lecture Notes in Electrical Engineering, vol 864. Springer, Singapore. https://doi.org/10.1007/978-981-16-9905-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9905-4_71

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9904-7

  • Online ISBN: 978-981-16-9905-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation