An Energy-Splitting High-Order Numerical Method for Multi-material Flows

  • Chapter
  • First Online:
Numerical Fluid Dynamics

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

This chapter deals with multi-material flow problems by a kind of effective numerical methods, based on a series of reduced forms of the Baer-Nunziato (BN)-type model. Numerical simulations often face a host of difficult challenges, typically including the volume fraction positivity and stability of multi-material shocks. To cope with these challenges, we propose a new non-oscillatory energy-splitting Godunov-type scheme for computing multi-material flows in the Eulerian framework. A novel reduced version of the BN-type model is introduced as the basis for the energy-splitting scheme. In comparison with existing two-material compressible flow models obtained by reducing the BN-type model in the literature, it is shown that our new reduced model can simulate the energy exchange around material interfaces very effectively. Then a second-order accurate extension of the energy-splitting Godunov-type scheme is made using the generalized Riemann problem (GRP) solver. Numerical experiments are carried out for the shock-interface interaction, shock-bubble interaction and the Richtmyer-Meshkov instability problems, which demonstrate the excellent performance of this type of schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Google Scholar 

  2. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Google Scholar 

  3. Ahn, H.T., Shashkov, M., Christon, M.A.: The moment-of-fluid method in action. Commun. Numer. Meth. Eng. 25, 1009–1018 (2009)

    Google Scholar 

  4. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    Google Scholar 

  5. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12, 861–889 (1986)

    Google Scholar 

  6. Banks, J.W., Schwendeman, D.W., Kapila, A.K., Henshaw, W.D.: A high-resolution Godunov method for compressible multi-material flow on overlap** grids. J. Comput. Phys. 223, 262–297 (2007)

    Google Scholar 

  7. Ben-Artzi, M.: The generalized Riemann problem for reactive flows. J. Comput. Phys. 81, 70–101 (1989)

    Google Scholar 

  8. Ben-Artzi, M., Birman, A.: Application of the generalized Riemann problem method to 1-D compressible flows with material interfaces. J. Comput. Phys. 65, 170–178 (1986)

    Google Scholar 

  9. Ben-Artzi, M., Birman, A.: Computation of reactive duct flows in external fields. J. Comput. Phys. 86, 225–255 (1990)

    Google Scholar 

  10. Ben-Artzi, M., Falcovitz, J.: A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1–32 (1984)

    Google Scholar 

  11. Ben-Artzi M., Falcovitz J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge University Press (2003)

    Google Scholar 

  12. Ben-Artzi, M., Li, J.: Hyperbolic conservation laws: Riemann invariants and the generalized Riemann problem. Numer. Math. 106, 369–425 (2007)

    Google Scholar 

  13. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218, 19–43 (2006)

    Google Scholar 

  14. Chang, C.H., Stagg, A.K.: A compatible Lagrangian hydrodynamic scheme for multicomponent flows with mixing. J. Comput. Phys. 231, 4279–4294 (2012)

    Google Scholar 

  15. Cheng, J., Shu, C.W.: Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys. 257, 143–168 (2014)

    Google Scholar 

  16. Cocchi, J.P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137, 265–298 (1997)

    Google Scholar 

  17. Colella P., Glaz H.M., Ferguson, R.E: Multifluid Algorithms for Eulerian Finite Difference Methods. Preprint (1989)

    Google Scholar 

  18. Du, Z., Li, J.: Accelerated piston problem and high order moving boundary tracking method for compressible fluid flows. SIAM J. Sci. Comput. 42, A1558–A1581 (2020)

    Google Scholar 

  19. Dyadechko, V., Shashkov, M.: Moment-of-Fluid Interface Reconstruction. Technical report, Los Alamos National Laboratory (2005)

    Google Scholar 

  20. Falcovitz, J., Alfandary, G., Hanoch, G.: A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys. 138, 83–102 (1997)

    Google Scholar 

  21. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Google Scholar 

  22. Francois, M.M., Shashkov, M.J., Masser, T.O., Dendy, E.D.: A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Comput. Fluids 83, 126–136 (2013)

    Google Scholar 

  23. Galera, S., Maire, P.H., Breil, J.: A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J. Comput. Phys. 229, 5755–5787 (2010)

    Google Scholar 

  24. Gallouët, T., Hérard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Mod. Meth. Appl. S. 14, 663–700 (2004)

    Google Scholar 

  25. Goncalves, E., Hoarau, Y., Zeidan, D.: Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves 29, 221–234 (2019)

    Google Scholar 

  26. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Google Scholar 

  27. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Google Scholar 

  28. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Google Scholar 

  29. Jenny, P., Müller, B., Thomann, H.: Correction of conservative Euler solvers for gas mixtures. J. Comput. Phys. 132, 91–107 (1997)

    Google Scholar 

  30. Kamm, J.R., Shashkov, M.J.: A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem. Technical report, Los Alamos National Laboratory (2009)

    Google Scholar 

  31. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001)

    Google Scholar 

  32. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    Google Scholar 

  33. Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17, 1019–1039 (1996)

    Google Scholar 

  34. Lallemand, M.H., Chinnayya, A., Metayer, O.L.: Pressure relaxation procedures for multiphase compressible flows. Int. J. Numer. Methods Fluids 49, 1–56 (2005)

    Google Scholar 

  35. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95, 59–84 (1991)

    Google Scholar 

  36. Lei, X., Du, Z., Li, J.: The simulation of compressible multi-fluid flows by a GRP-based energy-splitting method. Comput. Fluids 181, 416–428 (2019)

    Google Scholar 

  37. Lei, X., Li, J.: A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows. Phys. Fluids 30, 040906 (2018)

    Google Scholar 

  38. Li, J., Wang, Y.: Thermodynamical effects and high resolution methods for compressible fluid flows. J. Comput. Phys. 343, 340–354 (2017)

    Google Scholar 

  39. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Google Scholar 

  40. Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007)

    Google Scholar 

  41. Michael, L., Nikiforakis, N.: A hybrid formulation for the numerical simulation of condensed phase explosives. J. Comput. Phys. 316, 193–217 (2016)

    Google Scholar 

  42. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Google Scholar 

  43. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209–228 (1992)

    Google Scholar 

  44. Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202, 664–698 (2005)

    Google Scholar 

  45. Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., Fujii, K.: Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme. J. Comput. Phys. 231, 3181–3210 (2012)

    Google Scholar 

  46. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    Google Scholar 

  47. Pelanti, M., Shyue, K.M.: A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259, 331–357 (2014)

    Google Scholar 

  48. Petitpas, F., Franquet, E., Saurel, R., Le Metayer, O.: A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks. J. Comput. Phys. 225, 2214–2248 (2007)

    Google Scholar 

  49. Qi, J.: Numerical modeling of generalized riemann problem for two-dimensional euler equations and its application. Ph.D. thesis, Bei**g Normal University (2017)

    Google Scholar 

  50. Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129–163 (1996)

    Google Scholar 

  51. Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)

    Google Scholar 

  52. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Google Scholar 

  53. Saurel, R., Franquet, E., Daniel, E., Le Metayer, O.: A relaxation-projection method for compressible flows. Part I: the numerical equation of state for the Euler equations. J. Comput. Phys. 223, 822–845 (2007)

    Google Scholar 

  54. Saurel, R., Le Métayer, O., Massoni, J., Gavrilyuk, S.: Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16, 209–232 (2007)

    Google Scholar 

  55. Shashkov, M.: Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. Int. J. Numer. Meth. Fluids 56, 1497–1504 (2008)

    Google Scholar 

  56. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    Google Scholar 

  57. Shyue, K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions. J. Comput. Phys. 215, 219–244 (2006)

    Google Scholar 

  58. Shyue, K.M.: A moving-boundary tracking algorithm for inviscid compressible flow. In: Hyperbolic Problems: Theory Numerics, Applications, pp. 989–996. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  59. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    Google Scholar 

  60. Ton, V.T.: Improved shock-capturing methods for multicomponent and reacting flows. J. Comput. Phys. 128, 237–253 (1996)

    Google Scholar 

  61. Wood, A.B.: A Textbook of Sound. G. Bell and Sons Ltd., London (1930)

    Google Scholar 

  62. **ao, F., Li, S., Chen, C.: Revisit to the THINC scheme: a simple algebraic VOF algorithm. J. Comput. Phys. 230, 7086–7092 (2011)

    Google Scholar 

  63. Youngs, D.L.: Modelling turbulent mixing by Rayleigh-Taylor instability. Physica D 37, 270–287 (1989)

    Google Scholar 

  64. Zeidan, D., Slaouti, A., Romenski, E., Toro, E.F.: Numerical solution for hyperbolic conservative two-phase flow equations. Int. J. Comput. Methods 04, 299–333 (2007)

    Google Scholar 

  65. Zeidan, D., Touma, R., Slaouti, A.: Implementation of velocity and pressure non-equilibrium in gas-liquid two-phase flow computations. Int. J. Fluid Mech. Res. 41, 2547–555 (2014)

    Google Scholar 

  66. Zhang, Q., Fogelson, A.: MARS: An analytic framework of interface tracking via map** and adjusting regular semialgebraic sets. SIAM J. Numer. Anal. 54, 530–560 (2016)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of China (11771054, 91852207,12072042), National Key Project (GJXM 92579), Foundation of LCP and the Fundamental Research Funds for the Central Universities. We appreciate Professor Matania Ben-Artzi for his many kind comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiequan Li .

Editor information

Editors and Affiliations

Appendix: The 2-D GRP Solver

Appendix: The 2-D GRP Solver

Since the two-dimensional case is considered, we need to solve a so-called quasi 1-D GRP of (25) by setting the adjacent interface along \(x = 0\),

$$\begin{aligned} \begin{array}{l} \boldsymbol{W}_t+{\text {div}} \boldsymbol{F}(\boldsymbol{W})=\boldsymbol{0},\qquad \boldsymbol{F}=[\boldsymbol{f},\boldsymbol{g}], \\ (z_{a})_t+\boldsymbol{u} \cdot \nabla z_{a}=\Theta {\text {div}} \boldsymbol{u},\\ \boldsymbol{V}(x,y,0)=\left\{ \begin{array}{ll} \boldsymbol{V}_-(x,y), \ \ \ \ &{} x<0, \\ \boldsymbol{V}_+(x,y) &{} x>0, \end{array} \right. \end{array} \end{aligned}$$
(96)

where \(\boldsymbol{V}=[\boldsymbol{W};z_a]\), \(\boldsymbol{V}_-(x,y)\) and \(\boldsymbol{V}_+(x,y)\) are two polynomials defined on the two neighboring computational cells at time \(t = 0\), respectively. Since we just want to construct fluxes normal to cell interfaces, the tangential effect can be regarded as a source term. Therefore, we rewrite the quasi 1-D GRP (96) as

$$\begin{aligned} \begin{array}{l} \boldsymbol{W}_t+\boldsymbol{f}(\boldsymbol{W})_x=-\boldsymbol{g}(\boldsymbol{W})_y,\\ (z_{a})_t + u (z_{a})_x - \Theta u_x = \Theta v_y -v (z_{a})_y,\\ \boldsymbol{V}(x,\tilde{y},0)=\left\{ \begin{array}{ll} \boldsymbol{V}_-(x,\tilde{y}), \ \ \ \ &{} x<0, \\ \boldsymbol{V}_+(x,\tilde{y}), &{} x>0, \end{array} \right. \end{array} \end{aligned}$$
(97)

by fixing a y-coordinate. That is, we solve the 1-D GRP at a point \((0,\tilde{y})\) on the interface, by considering the transversal effect to the interface \(x=0\). The value \(\boldsymbol{g}(\boldsymbol{W})_y\) and \(\Theta v_y -v (z_{a})_y\) at \((0,\tilde{y})\) takes account of the local wave propagation. The solution of this GRP is denoted as \(\mathbf{GRP} \left( \boldsymbol{V}_-(\boldsymbol{x}),\boldsymbol{V}_+(\boldsymbol{x})\right) \) and solved by a 2-D GRP solver. This appendix introduces the 2-D GRP solver used in the coding process just for completeness and readers’ convenience. The details can be found in [49]. We notice that the equation of \(z_a\) is very close to the equation of mass fraction for the burnt gas in the basic “combustion model” [7], and the GRP solver for the combustion model in [7, 9] is a heuristic form of our 2-D GRP solver.

The GRP solver for solving (96) has the following two versions, which are the acoustic version and the genuinely nonlinear version.

1.1 2-D Acoustic Case

At any point \((0,\tilde{y})\), if \(\boldsymbol{V}_-(0-0,\tilde{y})\approx \boldsymbol{V}_+(0+0,\tilde{y})\) and \(\big \Vert \frac{\partial \boldsymbol{V}_-}{\partial x}(0-0,\tilde{y})\big \Vert \ne \big \Vert \frac{\partial \boldsymbol{V}_+}{\partial x}(0-0,\tilde{y})\big \Vert \), we view it as an acoustic case. Denote \(\boldsymbol{V}_*: = \boldsymbol{V}_-(0-0,\tilde{y})\approx \boldsymbol{V}_+(0+0,\tilde{y})\), and then linearize the governing equations (25) to get

$$\begin{aligned} \frac{\partial \boldsymbol{V}}{\partial t}+\boldsymbol{A}(\boldsymbol{V})\frac{\partial \boldsymbol{V}}{\partial x}+\boldsymbol{B}(\boldsymbol{V})\frac{\partial \boldsymbol{V}}{\partial y}=\boldsymbol{0}. \end{aligned}$$
(98)

We make the decomposition \(\boldsymbol{A}(\boldsymbol{V}_*) =\boldsymbol{R} \boldsymbol{\Lambda } \boldsymbol{R}^{-1}\), where \(\boldsymbol{\Lambda }=\text{ diag }\{\lambda _i\}\), \(\boldsymbol{R}\) is the (right) eigenmatrix of \(\boldsymbol{A}(\boldsymbol{V}_*)\). Then the acoustic GRP solver takes

$$\begin{aligned} \begin{array}{rl} \displaystyle \left( \frac{\partial \boldsymbol{V}}{\partial t}\right) _{(0,\tilde{y}, 0)} =&{} \displaystyle -\boldsymbol{R}\boldsymbol{\Lambda }^+ \boldsymbol{R}^{-1} \left( \frac{\partial \boldsymbol{V}_-}{\partial x}\right) _{(0-0,\tilde{y})}-\boldsymbol{R} \boldsymbol{I}^+ \boldsymbol{R}^{-1} \left( \boldsymbol{B}(\boldsymbol{V}_-)\frac{\partial \boldsymbol{V}_-}{\partial y}\right) _{(0-0,\tilde{y})}\\ &{}\displaystyle -\boldsymbol{R}\boldsymbol{\Lambda }^- \boldsymbol{R}^{-1} \left( \frac{\partial \boldsymbol{V}_+}{\partial x}\right) _{(0+0,\tilde{y})}-\boldsymbol{R} \boldsymbol{I}^- \boldsymbol{R}^{-1} \left( \boldsymbol{B}(\boldsymbol{V}_+)\frac{\partial \boldsymbol{V}_+}{\partial y}\right) _{(0+0,\tilde{y})}, \end{array} \end{aligned}$$
(99)

where \(\boldsymbol{\Lambda }^+ =\text{ diag }\{\max (\lambda _i,0)\}\), \(\boldsymbol{\Lambda }^- =\text{ diag }\{\min (\lambda _i,0)\}\), \(\boldsymbol{I}^+ =\frac{1}{2} \text{ diag }\{1+\text{ sign }(\lambda _i)\}\), \(\boldsymbol{I}^- =\frac{1}{2} \text{ diag }\{1-\text{ sign }(\lambda _i)\}\).

1.2 2-D Nonlinear Case

At any point \((0,\tilde{y})\), if the difference \(\Vert \boldsymbol{V}_-(0-0,\tilde{y})-\boldsymbol{V}_+(0+0,\tilde{y})\Vert \) is large, we regard it as the genuinely nonlinear case and have to solve the 2-D GRP analytically. A key ingredient is how to understand \(\boldsymbol{g}(\boldsymbol{W})_y\) and \(\Theta v_y -v (z_{a})_y\) at \((0,\tilde{y})\). Here, we construct the 2-D GRP solver by two steps.

  1. (i)

    We solve the local planar 1-D Riemann problem

    $$\begin{aligned} \begin{array}{l} \boldsymbol{W}_t+\boldsymbol{f}(\boldsymbol{W})_x=\boldsymbol{0},\ \ \ \ t>0, \\ (z_{a})_t + u (z_{a})_x - \Theta u_x = 0,\\ \mathbf {w}(x,\tilde{y},0) =\left\{ \begin{array}{ll} \boldsymbol{V}_-(0-0,\tilde{y}), \ \ \ &{}x<0,\\ \boldsymbol{V}_+(0+0,\tilde{y}), &{} x>0, \end{array} \right. \end{array} \end{aligned}$$
    (100)

    where \(\mathbf {w}=[\boldsymbol{W};z_a]\), to obtain the local Riemann solution \(\boldsymbol{V}_* =\mathbf {w}(0,\tilde{y},0+0)\). Just as in the acoustic case, we decompose \(\boldsymbol{A}(\boldsymbol{V}_*) =\boldsymbol{R}\boldsymbol{\Lambda }\boldsymbol{R}^{-1}\). Then we set

    $$\begin{aligned} \boldsymbol{h}(x,y)= \begin{bmatrix} -\overline{ \boldsymbol{g}(\boldsymbol{W})_y}\\ \overline{ \Theta v_y -v (z_{a})_y} \end{bmatrix} = \left\{ \begin{array}{ll} -\boldsymbol{R} \boldsymbol{I}^+ \boldsymbol{R}^{-1} \left( \boldsymbol{B}(\boldsymbol{V}_-)\frac{\partial \boldsymbol{V}_-}{\partial y}\right) _{(0-0,\tilde{y})}, \ \ \ &{}x<0,\\ -\boldsymbol{R} \boldsymbol{I}^- \boldsymbol{R}^{-1} \left( \boldsymbol{B}(\boldsymbol{V}_+)\frac{\partial \boldsymbol{V}_+}{\partial y}\right) _{(0+0,\tilde{y})}, \ \ \ &{}x>0, \end{array} \right. \end{aligned}$$
    (101)

    where \(\boldsymbol{I}^\pm \) are defined the same as in (99).

  2. (ii)

    We solve the quasi 1-D GRP

    $$\begin{aligned} \begin{array}{l} \boldsymbol{W}_t+\boldsymbol{f}(\boldsymbol{W})_x=-\overline{ \boldsymbol{g}(\boldsymbol{W})_y},\ \ \ \ t>0, \\ (z_{a})_t + u (z_{a})_x - \Theta u_x = \overline{ \Theta v_y -v (z_{a})_y},\\ \mathbf {w}(x,y, 0) =\left\{ \begin{array}{ll} \boldsymbol{V}_-(x,y), \ \ \ &{}x<0,\\ \boldsymbol{V}_+(x,y), &{} x>0, \end{array} \right. \end{array} \end{aligned}$$
    (102)

    to obtain \(\left( \frac{\partial \boldsymbol{V}}{\partial t}\right) _*=\frac{\partial \boldsymbol{V}}{\partial t}(0,\tilde{y}, 0+0)\). This is done by solving the 1-D GRP for homogeneous equations

    $$\begin{aligned} \begin{array}{l} \boldsymbol{W}_t+\boldsymbol{f}(\boldsymbol{W})_x=\boldsymbol{0},\ \ \ \ t>0, \\ (z_{a})_t + u (z_{a})_x - \Theta u_x = 0,\\ \mathbf {w}(x,\tilde{y}, 0) =\left\{ \begin{array}{ll} \boldsymbol{V}_-(x,\tilde{y}), \ \ \ &{}x<0,\\ \boldsymbol{V}_+(x,\tilde{y}), &{} x>0. \end{array} \right. \end{array} \end{aligned}$$
    (103)

    For the augmented Euler equations, \(\left( \frac{\partial \mathbf {w}}{\partial t}\right) _*=\frac{\partial \mathbf {w}}{\partial t}(0,\tilde{y}, 0+0)\) is obtained by solving a pair of algebraic equations essentially,

    $$\begin{aligned} \begin{array}{ll} \displaystyle a_L\left( \frac{\partial u}{\partial t}\right) _* + b_L \left( \frac{\partial p}{\partial t}\right) _*=d_L,\\ \displaystyle a_R\left( \frac{\partial u}{\partial t}\right) _* + b_R\left( \frac{\partial p}{\partial t}\right) _*=d_R. \end{array} \end{aligned}$$
    (104)

    At last, we have

    $$\begin{aligned} \left( \frac{\partial \boldsymbol{V}}{\partial t}\right) _*=\left( \frac{\partial \mathbf {w}}{\partial t}\right) _*+\boldsymbol{h}(x,\tilde{y}). \end{aligned}$$
    (105)

    Here, if we ignore \(\boldsymbol{h}(x,\tilde{y})\), the solver is called 1-D GRP solver. Solvers for the GRP (102) with a general source term are presented in [12]. When specified to (97), construction of the solver can be found in [49].

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, X., Li, J. (2022). An Energy-Splitting High-Order Numerical Method for Multi-material Flows. In: Zeidan, D., Merker, J., Da Silva, E.G., Zhang, L.T. (eds) Numerical Fluid Dynamics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-16-9665-7_8

Download citation

Publish with us

Policies and ethics

Navigation