• 184 Accesses

Abstract

Angle of arrival (AoA) estimation with localized hybrid arrays is challenging in mmWave communication systems. Most existing solutions quantize AoAs into limited values with relatively low accuracy. This chapter proposes a multi-AoA estimation scheme which is capable of estimating multiple AoAs from multiple users with low complexity. Section 5.1 presents the motivation of investigating the AoA estimation with localized hybrid arrays. Section 5.2 introduces system and channel models. Section 5.3 presents the proposed estimation scheme referring to a uniform linear hybrid array. Section 5.4 extends the scheme to wideband systems, consisting of the estimation of both AoAs and time delay. Section 5.5 introduces the new performance metrics and derives a lower bound of mean square error (MSE) for the estimates. Section 5.6 provides extensive simulation results and validates the effectiveness of the proposed multi-AoA estimation scheme. Section 5.7 concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Solanki, P.K. Upadhyay, D.B. da Costa, P.S. Bithas, A.G. Kanatas, U.S. Dias, Joint impact of RF hardware impairments and channel estimation errors in spectrum sharing multiple-relay networks. IEEE Trans. Commun. 66(9), 3809–3824 (2018)

    Article  Google Scholar 

  2. K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, R. Fan, Non-orthogonal multiple access: achieving sustainable future radio access. IEEE Commun. Mag. 57(2), 116–121 (2018)

    Article  Google Scholar 

  3. E. Torkildson, U. Madhow, M. Rodwell, Indoor millimeter wave MIMO: feasibility and performance. IEEE Trans. Wireless Commun. 10(12), 4150–4160 (2011)

    Article  Google Scholar 

  4. O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, R.W. Heath, Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3), 1499–1513 (2014)

    Article  Google Scholar 

  5. S. Costanzo, I. Venneri, G. Di Massa, G. Amendola, Hybrid array antenna for broadband millimeter-wave applications. Prog. Electromagnet. Res. 83, 173–183 (2008)

    Article  Google Scholar 

  6. K. Yu, Y.J. Guo, Statistical NLOS identification based on AOA, TOA, and signal strength. IEEE Trans. Veh. Technol. 58(1), 274–286 (2008)

    Article  Google Scholar 

  7. J.A. Zhang, X. Huang, V. Dyadyuk, Y.J. Guo, Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wireless Commun. 22(1), 79–87 (2015)

    Article  Google Scholar 

  8. M.A. Iwen, A.H. Tewfik, Adaptive strategies for target detection and localization in noisy environments. IEEE Trans. Signal Process. 60(5), 2344–2353 (2012)

    Article  MathSciNet  Google Scholar 

  9. M. Rossi, A.M. Haimovich, Y.C. Eldar, Spatial compressive sensing for MIMO radar. IEEE Trans. Signal Process. 62(2), 419–430 (2013)

    Article  MathSciNet  Google Scholar 

  10. X. Lin, S. Wu, C. Jiang, L. Kuang, J. Yan, L. Hanzo, Estimation of broadband multiuser millimeter wave massive MIMO-OFDM channels by exploiting their sparse structure. IEEE Trans. Wireless Commun. 17(6), 3959–3973 (2018)

    Article  Google Scholar 

  11. Z. Gao, C. Hu, L. Dai, Z. Wang, Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun. Lett. 20(6), 1259–1262 (2016)

    Article  Google Scholar 

  12. J. Rodríguez-Fernández, N. González-Prelcic, K. Venugopal, R.W. Heath, Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 17(5), 2946–2960 (2018)

    Article  Google Scholar 

  13. X. Huang, Y.J. Guo, J.D. Bunton, A hybrid adaptive antenna array. IEEE Trans. Wireless Commun. 9(5), 1770–1779 (2010)

    Article  Google Scholar 

  14. X. Huang, Y.J. Guo, Frequency-domain AoA estimation and beamforming with wideband hybrid arrays. IEEE Trans. Wireless Commun. 10(8), 2543–2553 (2011)

    Article  Google Scholar 

  15. J.A. Zhang, X. Huang, Y.J. Guo, Adaptive searching and tracking algorithm for AoA estimation in localized hybrid array, in IEEE International Conference on Communication Workshop (ICCW). IEEE (2015), pp. 1095–1100

    Google Scholar 

  16. J.A. Zhang, W. Ni, P. Cheng, Y. Lu, Angle-of-arrival estimation using different phase shifts across subarrays in localized hybrid arrays. IEEE Commun. Lett. 20(11), 2205–2208 (2016)

    Article  Google Scholar 

  17. K. Wu, W. Ni, T. Su, R.P. Liu, Y.J. Guo, Robust unambiguous estimation of angle-of-arrival in hybrid array with localized analog subarrays. IEEE Trans. Wireless Commun. 17(5), 2987–3002 (2018)

    Article  Google Scholar 

  18. S.F. Chuang, W.R. Wu, Y.T. Liu, High-resolution AoA estimation for hybrid antenna arrays. IEEE Trans. Antennas Propag. 63(7), 2955–2968 (2015)

    Article  MathSciNet  Google Scholar 

  19. S. Kutty, D. Sen, Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutorials 18(2), 949–973 (2015)

    Article  Google Scholar 

  20. D.W. Tufts, R. Vacarro, A. Kot, Analysis of estimation of signal parameters by linear-prediction at high SNR using matrix approximation, in International Conference on Acoustics, Speech, and Signal Processing. IEEE (1989), pp. 2194–2197

    Google Scholar 

  21. R.J. Mailloux, Subarray technology for large scanning arrays, in The Second European Conference on Antennas and Propagation, EuCAP 2007. IET (2007), pp. 1–6

    Google Scholar 

  22. Y.J. Guo, X. Huang, V. Dyadyuk, A hybrid adaptive antenna array for long-range mm-wave communications [antenna applications corner]. IEEE Antennas Propag. Mag. 54(2), 271–282 (2012)

    Article  Google Scholar 

  23. X. Gao, L. Dai, S. Han, I. Chih-Lin, R.W. Heath, Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J. Sel. Areas Commun. 34(4), 998–1009 (2016)

    Article  Google Scholar 

  24. C. Lin, G.Y. Li, Energy-efficient design of indoor mmWave and sub-THz systems with antenna arrays. IEEE Trans. Wireless Commun. 15(7), 4660–4672 (2016)

    Google Scholar 

  25. A. Alkhateeb, O. El Ayach, G. Leus, R.W. Heath, Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Topics Signal Process. 8(5), 831–846 (2014)

    Article  Google Scholar 

  26. S. Noh, M.D. Zoltowski, D.J. Love, Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment. IEEE Trans. Wireless Commun. 16(9), 5689–5701 (2017)

    Article  Google Scholar 

  27. A. Alkhateeb, R.W. Heath, Frequency selective hybrid precoding for limited feedback millimeter wave systems. IEEE Trans. Commun. 64(5), 1801–1818 (2016)

    Article  Google Scholar 

  28. S. Park, A. Alkhateeb, R.W. Heath, Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems. IEEE Trans. Wireless Commun. 16(5), 2907–2920 (2017)

    Article  Google Scholar 

  29. X. Huang, Y.J. Guo, Closed-form MSE performance for phase estimation from Gaussian reference signals, in 11th International Symposium on Communications & Information Technologies (ISCIT). IEEE (2011), pp. 154–158

    Google Scholar 

  30. R. Reggiannini, A fundamental lower bound to the performance of phase estimators over Rician-fading channels. IEEE Trans. Commun. 45(7), 775–778 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang .

Appendix

Appendix

5.1.1 Proof of \(\frac{\pi }{N}\le B\le \frac{2\pi }{N}, N\ge 2\)

In (5.11), B is defined as \(2\omega _0\) with \(\frac{\sin (N\omega _0)}{\sin (\omega _0)}=\frac{N}{2}\). For the right inequality, we use the inequality of \(\frac{\sin (N\omega _0)}{\sin (\omega _0)}=\frac{N}{2}\ge \frac{\sin (\pi )}{\sin (\frac{\pi }{N})}=0\). Noting that \(\frac{\sin (N\omega )}{\sin (\omega )}\) is a decreasing function with \(\omega \in (0,\pi /N)\), we have \(\omega _0\le \pi /N\), i.e., \(B=2\omega _0\le \frac{2\pi }{N}\).

For the left inequality, we use the inequality of \( {\sin \left( \frac{\pi }{2N}\right) }\le \frac{\pi }{2N} \le \frac{2}{N}\), where the former inequality is due to \(\sin x\le x, x\ge 0\) and the latter one is valid when \(N\ge 2\). Then we have \( \frac{1}{\sin \left( \frac{\pi }{2N}\right) }= \frac{\sin (N\frac{\pi }{2N})}{\sin \frac{\pi }{2N}}\ge \frac{N}{2}=\frac{\sin (N\omega _0)}{\sin (\omega _0)}\). Because \(\frac{\sin (N\omega )}{\sin (\omega )}\) is a decreasing function with \(\omega \in (0,\pi /N)\), we have \(\omega _0\ge \frac{\pi }{2N} \), i.e., \(B=2\omega _0\ge \frac{\pi }{N}, N\ge 2\).

Therefore, \(\frac{\pi }{N}\le B\le \frac{2\pi }{N}, N\ge 2.\)

5.1.2 Proof of Theorem 5.1

Since the magnified path satisfies that \(|c_{m_l}^{k,t}-\Omega _l|<\frac{2\pi }{KT}\), we have

$$\begin{aligned} \left| \omega _{l,m_l}^{k,t} \right| =\left| \frac{c_{m_l}^{k,t}-\Omega _l}{2} \right| \le \frac{\pi }{KT}\le \frac{\pi }{N}. \end{aligned}$$
(5.40)

Due to \( 1\le {m_l} \le M\), the gap between \(c_{m_l}^{k,t}\) and \(c_{m }^{k,t}\) is maximized when \(m_l\) equals 1 or M. By letting \(m_l=1\), we have \(c_m^{k,t}=c_{m_l}^{k,t}+\frac{2\pi (m-1)}{KTM}\). Hence,

$$\begin{aligned} \left| \omega _{l,m}^{k,t} \right|&=\left| \frac{c_{m_l}^{k,t}+\frac{2\pi \left( m-1 \right) }{KTM}-\Omega _l}{2} \right| \le \left| \frac{c_{m_l}^{k,t}-\Omega _l}{2} \right| +\frac{\pi \left( m-1 \right) }{KTM} \le \frac{2\pi }{KT}\le \frac{2\pi }{N}. \end{aligned}$$
(5.41)

The interval that keeps the sign of \(\frac{\sin Nx}{\sin x}\) unchanged is given by \(\Delta x=\frac{2\pi }{N}\). From (5.41), it is clear that there is only one zero point, denoted as \(x_0\), in \(P_m^{k,t}\), such that \(P_m^{k,t}>0\) when \(\omega _{l,m}^{k,t}>x_0\) and \(P_m^{k,t}<0\) when \(\omega _{l,m}^{k,t}<x_0\). Therefore, there is at most one m, such that \(P_m^{k,t}P_{m+1}^{k,t}<0\), and this m is close to \(x_0\). Hence, if it exists, it has the least absolute value.

5.1.3 Proof of Theorem 5.2

We note that the efficient signal power of \(y_m^{k,t}\) equals \(|\alpha _u s_u(t)|^2|P_m^{k,t}|^2\). Let the variance of \(I_{m}^{k,t}+n_m^{k,t}\) be \(\delta \). The SINR of \(y_m^{k,t}\) is given by

$$\begin{aligned} \frac{\left| \alpha _us_u\left( t \right) \right| ^2\left| P_{m}^{k,t} \right| ^2}{\delta }\triangleq \frac{\bar{P}}{\delta }. \end{aligned}$$
(5.42)

\(\tilde{z}_m^{k,t}\) in (5.16) is given by

$$\begin{aligned} \tilde{z}_{m}^{k,t}=\left| I_{m}^{k,t}+z_{m}^{k,t} \right| ^2+A_{m}^{k,t*}\left( I_{m}^{k,t}+z_{m}^{k,t} \right) +A_{m+1}^{k,t}\left( I_{m}^{k,t}+z_{m}^{k,t} \right) ^*, \end{aligned}$$
(5.43)

hence the variance of \(\tilde{z}_m^{k,t}\) equals \(2\bar{P}\delta +\delta ^2\) and the SINR of \(\rho _{m}^{k,t}\) is given by

$$\begin{aligned} \frac{\left| \alpha _us_u\left( t \right) \right| ^4\left| P_{m}^{k,t} \right| ^2\left| P_{m+1}^{k,t} \right| ^2}{2\bar{P}\delta +\delta ^2}\approx \frac{\bar{P}^2}{2\bar{P}\delta +\delta ^2}. \end{aligned}$$
(5.44)

Therefore, the SINR of \(\rho _{m }^{k,t}\) is smaller than that of \(y_m^{k,t}\).

5.1.4 Proof of (5.36)

Given u uniformly distributed in \((-\pi ,\pi )\) and \(P_m^{k,t}=\frac{\sin (N\omega _{d,m}^{k,t})}{\sin (\omega _{d,m}^{k,t})}\), we have \(\mathbb E\left( P_m^{k,t}\right) ^2=\frac{1}{2\pi }\int _{-\pi }^{\pi }\) \(\left| \frac{\sin (N\omega _{d,m}^{k,t})}{\sin (\omega _{d,m}^{k,t})}\right| ^2\mathrm{d}u\). We calculate the integral by using the property of Fourier transform. We note that discrete-time Fourier transform (DTFT) of the window function is given by \(F(u)=\sum _{n=0}^{N-1}1\cdot e^{-jun}=e^{j\frac{N-1}{2}u}\frac{\sin (Nu/2)}{\sin (u/2)}\). Using the frequency-shift property of DTFT, \(P_m^{k,t}\) equals \(\sum _{n=0}^{N-1}1\cdot e^{-ju(n+\frac{N-1}{2} )}\). As a result, we have \(E\left( P_m^{k,t}\right) ^2=\frac{1}{2\pi }\int _{-\pi }^{\pi }\left| \sum _{n=0}^{N-1}1\cdot e^{-ju(n+\frac{N-1}{2} )} \right| ^2\mathrm{d}u=N\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, K., Shi, M., Yuan, H., Ni, Z. (2022). Angle of Arrivals Estimation for Multiuser mmWave Systems. In: Millimeter-Wave Communication Systems: Network Analysis and Hybrid Precoding Design. Springer, Singapore. https://doi.org/10.1007/978-981-16-9621-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9621-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9620-6

  • Online ISBN: 978-981-16-9621-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation