Medical Image Segmentation Using Transformer

  • Conference paper
  • First Online:
Artificial Intelligence in China

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 854))

  • 1639 Accesses

Abstract

For the past few years, the U-Net structure shows strong performance in the field of medical image segmentation. However, due to the inherent locality of convolution operations, U-shaped structures are often limited in modeling long-range dependencies. Transformer, a global self-attention mechanism designed for sequence-to-sequence prediction, has been successfully used in the field of computer vision. In this paper, we propose a novel network, named TransHarDNet. HarDNet, which is a low memory traffic CNN. We combine it as backbone with Transformer. Our network enables the global semantic context information and low-level spatial details of the input image to be captured more effectively. We evaluate the effectiveness of the proposed network on five medical image datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  2. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: IEEE TMI, pp. 3–11 (2019)

    Google Scholar 

  3. Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: IEEE ISM, pp. 225–230 (2019)

    Google Scholar 

  4. Oktay, O., et al.: Attention U-Net: Learning Where to Look for the Pancreas. Ar**v Preprint Ar**v:1804.03999 (2018)

  5. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  6. ImageNet. http://image-net.org

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

  8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE TPAMI, pp. 1137–1149 (2017)

    Google Scholar 

  9. Zheng, S., et al.: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. Ar**v Preprint Ar**v:2012.15840 (2020)

  10. Chen, J., et al.: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. Ar**v Preprint Ar**v:2102.04306 (2021)

  11. Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L. et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273 . Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

  12. Huang, C.H., Wu, H.Y., Lin, Y.L.: HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 FPS. Ar**v Preprint Ar**v:2101.07172 (2021)

  13. Chao, P., Kao, C.-Y., Ruan, Y., Huang, C.-H., Lin, Y.-L.: HarDNet: a low memory traffic network. In: IEEE/CVF ICCV, pp. 3552–3561 (2019)

    Google Scholar 

  14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 385–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

  17. Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: IEEE CVPR, pp. 3907–3916 (2019)

    Google Scholar 

  18. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

  19. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE TMI 35(2), 630–644 (2015)

    Google Scholar 

  20. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2013). https://doi.org/10.1007/s11548-013-0926-3

    Article  Google Scholar 

  21. V\(\acute{a}\)zquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 1–10 (2017)

    Google Scholar 

  22. Bernal, J., S\(\acute{a}\)nchez, F.J., Fern\(\acute{a}\)ndez-Esparrach, G., Gil, D., Rodr\(\acute{i}\)guez, C., Vilari\(\tilde{n}\)o, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. In: CMIG, vol. 43, pp. 99–111 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q. et al. (2022). Medical Image Segmentation Using Transformer. In: Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z. (eds) Artificial Intelligence in China. Lecture Notes in Electrical Engineering, vol 854. Springer, Singapore. https://doi.org/10.1007/978-981-16-9423-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9423-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9422-6

  • Online ISBN: 978-981-16-9423-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation