Characterization of the San Andreas Fault by Fault-Zone Trapped Waves at Seismic Experiment Site, Parkfield, California: A Review

  • Chapter
  • First Online:
China Seismic Experimental Site
  • 322 Accesses

Abstract

The San Andreas Fault (SAF) at Parkfield, California has been taken as a seismic experimental site since the 1970s. The San Andreas Fault Observatory at Depth (SAFOD) measured a ~200-m-wide damage zone with a seismic velocity reduction of ~25–30% within the mature SAF at ~3 km depth. Observations and 3-D finite-difference simulations of fault-zone trapped waves (FZTWs) recorded in a sequence of seismic experiments conducted at the Parkfield SAF characterized a low-velocity waveguide in the SAF, likely extending from the surface to ~7-km depth with a width taper from ~200 m to ~100 m, within which seismic wave velocities are reduced by 20–40% and Q is 15–50. The FZTW data recorded before and after the 2004 M6 Parkfield earthquake show that the SAF co-seismically weakened with seismic wave velocities reduced by ~2.5% and consequently healed with seismic velocity recovery by ~1.25% within approximate three months after the mainshock. This chapter is a retrospective review of the results from our previous experiments at the Parkfield SAF, California, we expect that it will be valuable for researchers who are carrying out seismic experiments at the active faults to develop the community models of seismic wave velocity, fault structure and earthquake forecasting in the China Seismic Experimental Site (CSES) and global earthquake regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aki, K. (1984). Asperities, barriers, characteristic earthquakes, and strong motion prediction. Journal of Geophysical Research, 89, 5867–5872.

    Article  Google Scholar 

  • Aki K., Richards P.G., 1980. Quantitative Seismology: Theory and methods, W.H. Freeman and Co.

    Google Scholar 

  • Anderson, J. G., & Brune, J. N. (1999). Probabilistic seismic hazard analysis without the ergodic assumption. Seismological Research Letters, 70(1), 19–28. https://doi.org/10.1785/gssrl.70.1.19

    Article  Google Scholar 

  • Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research, 110, B01307. https://doi.org/10.1029/2004jb003191

    Article  Google Scholar 

  • Angevine, C. L., & Turcotte, D. L. (1983). Porosity reduction by pressure solution: A theoretical model for quartz arenites. Geological Society of America Bulletin, 94, 1129–1134.

    Article  Google Scholar 

  • Ben-Zion, Y. (1998). Properties of seismic fault zone waves and their utility for imaging low-velocity structure. Journal of Geophysical Research, 103, 12567–12585.

    Article  Google Scholar 

  • Blanpied, M. L., Marone, C. J., Lockner, D. A., Byerlee, J. D., & King, D. P. (1998). Quantitative measure of the variation in fault rheology due to fluid-rock interactions. Journal of Geophysical Research, 103, 9691–9712.

    Article  Google Scholar 

  • Byerlee, J. (1990). Friction, overpressure and fault-normal compression. Geophysical Research Letters, 17, 2109–2112.

    Article  Google Scholar 

  • Catchings, R. D., Rymer, M. J., Goldman, M. R., Hole, J. A., Huggings, R., & Lippus, C. (2002). High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California. Bulletin of the Seismological Society of America, 92, 2493–2503.

    Article  Google Scholar 

  • Catchings, R. D., Goldman, M. R., Li, Y. G., & Chan, J. H. (2016). Continuity of the West Napa-Franklin fault zone inferred from guided waves generated by earthquakes following the 24 August 2014 Mw 6.0 South Napa earthquake. Bulletin Seismological Society America, 106(6). https://doi.org/10.1785/0120160154

  • Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98, 771–786.

    Article  Google Scholar 

  • Cochran, E. S., Li, Y. G., Shearer, P. M., Barbot, S., Fialko, Y., & Vidale, J. E. (2009). Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, V9.37(4), 315–318. https://doi.org/10.1130/G25306A.1; Data Repository item 2009082.

  • Das, S., & Aki, K. (1997). Fault plane with barriers: A versatile earthquake model. Journal of Geophysical Research, 82, 5658–5670.

    Article  Google Scholar 

  • Dieterich, J. H. (1978). Time-dependent friction and the mechanics of strike-slip. Pure and Applied Geophysics, 116, 790–806.

    Article  Google Scholar 

  • Eberhart-Phillips, D., & Michael, A. J. (1993). Three-dimensional velocity structure, seismicity, and fault structure in Parkfield region, central California. Journal of Geophysical Research, 98, 15737–15758.

    Article  Google Scholar 

  • Ellsworth, W. L., & Malin, P. E. (2011). Deep rock damage in the San Andreas fault revealed by P- and S-type fault zone guided waves, Sibson’s volume. Geological Society Special Publication, 359, 39–53.

    Google Scholar 

  • Garbin, H. D., & Knopoff, L. (1975). Elastic moduli of a medium with liquid-filled cracks. Quarterly of Applied Mathematcis, 32, 301–303.

    Google Scholar 

  • Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86, 1091–1106.

    Google Scholar 

  • Harris, R. A., & Day, S. M. (1993). Dynamics of fault interaction: Parallel strike-slip faults. Journal of Geophysical Research, 98, 4461–4472.

    Article  Google Scholar 

  • Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64, 1–20.

    Article  Google Scholar 

  • Hickman, S. H., & Evans, B. (1992). Growth of grain contacts in halite by solution-transfer: Implications for diagenesis, lithification, and strength recovery, in fault mechanics and transport properties of rocks (pp. 253–280). Academic.

    Google Scholar 

  • Hickman, S., Zoback, M., Younker, L., & Ellsworth, W. (1994). Deep scientific drilling in the San Andreas fault zone. Eos, 75, 137.

    Article  Google Scholar 

  • Hickman, S., Sibson, R., & Bruhn, R. (1995). Introduction to special section: mechanical involvement of fluids in faulting. Journal of Geophysics Research, 100, 12831–12840.

    Google Scholar 

  • Hickman, S. H., Zoback, M. D., & Ellsworth, W. L. (2005). Structure and Composition of the San Andreas fault zone at Parkfield: Initial results from SAFOD Phase 1 and 2. EOS, Transactions of American Geophysics Union, 83(47), 237.

    Google Scholar 

  • Korneev, V. A., Nadeau, R. M., & McEvilly, T. V. (2003). Seismological studies at Parkfield IX: Fault-zone imaging using guided wave attenuation. Bulletin Seismological Society America, 80, 1245–1271.

    Google Scholar 

  • Laehenbruch, A. H. (1980). Frictional heating, fluid pressure and the resistance to fault motion. Journal of Geophysical Research, 85, 6097–6112.

    Article  Google Scholar 

  • Lambert, V., Lapusta, N., & Perry, S. (2021). Propagation of large earthquakes as self-healing pulses or mild cracks, Nature. Nature, 591(7849):252–258. https://doi.org/10.1038/s41586-021-03248-1

  • Leary, P. C., Li, Y.-G., & Aki, K. (1987). Observation and modelling of fault zone fracture seismic anisotropy—I. P, SV, SH travel times. Geophysics Journal of Royal Astronomical Society, 91, 461–484.

    Article  Google Scholar 

  • Lees, J. M., & Malin, P. E. (1990). Tomographic images of P wave velocity variation at Parkfield, California. Journal of Geophysical Research, 95, 21793–21804.

    Article  Google Scholar 

  • Li, Y. G., Leary, P. C., & Aki, K. (1987). Observation and modeling of fault zone fracture seismic anisotropy—II. P-wave polarization anomalies. Geophysics Journal of Royal Astronomy Society, 91, 485–492.

    Article  Google Scholar 

  • Li, Y. G., Leary, P. C., Aki, K., & Malin, P. E. (1990). Seismic trapped modes in the Oroville and San Andreas fault zones. Science, 249, 763–766.

    Article  Google Scholar 

  • Li, Y. G., & Leary, P. C. (1990). Fault-zone trapped seismic waves. Bulletin of the Seismological Society of America, 80, 1245–1271.

    Article  Google Scholar 

  • Li, Y. G., Vidale, J. E., Aki, K., Marone, C. J., & Lee, W. H. K. (1994a). Fine structure of the Landers fault zone: Segmentation and the rupture process. Science, 256, 367–370.

    Article  Google Scholar 

  • Li, Y. G., Aki, K., Adams, D., Hasemi, A., & Lee, W. H. K. (1994b). Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. Journal of Geophysical Research, 99, 11705–11722.

    Article  Google Scholar 

  • Li, Y. G., & Vidale, J. E. (1996). Low-velocity fault zone guided waves; numerical investigations of trap** efficiency. Bulletin Seismological Society America, 86, 371–378.

    Google Scholar 

  • Li, Y. G., Ellsworth, W. L., Thurber, C. H., Malin, P. E., & Aki, K. (1997). Observations of fault-zone trapped waves excited by explosions at the San Andreas fault, Central California. Bulletin Seismological Society America, 87, 210–221.

    Google Scholar 

  • Li, Y. G., Vidale, J. E., Aki, K., Xu, F., & Burdette, T. (1998). Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers. California, Earthquake, Science, 279, 217–219.

    Google Scholar 

  • Li, Y. G., Aki, K., Vidale, J. E., & Xu, F. (1999). Shallow structure of the Landers fault zone from explosion-generated trapped waves. Journal of Geophysical Research, 104, 20257–20275.

    Article  Google Scholar 

  • Li, Y. G., Vidale, J. E., & Aki, K. (2000). Depth-dependent structure of the Landers fault zone using fault zone trapped waves generated by aftershocks. Journal of Geophysical Research, 105, 6237–6254.

    Article  Google Scholar 

  • Li, Y. G., & Vidale, J. E. (2001). Healing of the shallow fault zone from 1994–1998 after the 1992 M7.5 Landers, California, earthquake. Geophys Res. Letter, 28, 2999–3002.

    Article  Google Scholar 

  • Li, Y. G., Vidale, J. E., Day, S. M., & Oglesby, D. (2002). Study of the M7.1 Hector Mine, California, earthquake fault plan by fault-zone trapped waves, Hector Mine earthquake special issue. Bulletin Seismological Society America, 92, 1318–1332.

    Google Scholar 

  • Li, Y. G., Vidale, J. E., Oglesby, D., Day, S. M., & Cochran, E. (2003a). Multiple-fault rupture of the M7.1 Hector Mine, California, earthquake from fault-zone trapped waves. Journal of Geophysics Res, 108, 1–25.

    Google Scholar 

  • Li, Y. G., Vidale, J. E., Day, S. M., Oglesby, D. D., & Cochran, E. (2003b). Post-seismic fault healing on the 1999 M7.1 Hector Mine, California earthquake. Bulletin Seismological Society America, 93, 854–869.

    Article  Google Scholar 

  • Li, Y. G., Vidale, J. E., & Cochran, S. E. (2004). Low-velocity damaged structure of the San Andreas fault at Parkfield from fault-zone trapped waves. Geophyics Research Letters, 31, L12S06.

    Google Scholar 

  • Li, Y. G., Chen, P., Cochran, E. S., Vidale, J. E., & Burdette, T. (2006). Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M6 Parkfield earthquake, special issue for Parkfield M6 earthquake. Bulletin Seismological Society America, 96(4), S1–15.https://doi.org/10.1785/0120050803

  • Li, Y. G., Chen, P., Cochran, E. S., & Vidale, J. E. (2007a). Seismic velocity variations on the San Andreas Fault caused by the 2004 M6 Parkfield earthquake and their implications. Earth, Planets and Space, 59, 21–31.

    Article  Google Scholar 

  • Li, Y. G., Malin, P. E., Vidale, J. E. (2007b). Low-velocity damage zone on the San Andreas fault at depth near SAFOD site at Parkfield by fault-zone trapped waves. Scientific Drilling, 1https://doi.org/10.2204/iodp.sd.s01.09,73-77

  • Li, Y. G., & Malin, P. E. (2008). San Andreas fault damage at SAFOD viewed with fault-guided waves. Geophysical Research Letters, 35, L08304. https://doi.org/10.1029/2007GL032924

    Article  Google Scholar 

  • Li, Y. G., De Pascale, G., Quigley, M., & Gravely, D. (2014a). Fault damage zones of the M7.1 Darfield and M6.3 Christchurch earthquakes characterized by fault-zone trapped waves. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.01.029

  • Li, Y. G., Xu, Z. Q., & Li, H. B. (2014b). Rock damage structure of the south Longmen-Shan fault in the 2008 M8 Wenchuan earthquake viewed with fault-zone trapped waves and scientific drilling. Acta Geological Sinica, V88(2), 444–467.

    Google Scholar 

  • Li, Y. G., Catchings, R. D., & Goldman, M. R. (2016). Subsurface fault damage zone of the 2014 Mw 6.0 South Napa, California, earthquake viewed from fault-zone trapped waves. Bulletin Seismological Society America, 106. https://doi.org/10.1785/0120160039

  • Lockner, D. A., Morrow, C., Moore, D., & Hickman, S. (2011). Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472, 82–85.

    Article  Google Scholar 

  • Malin, P., Shalev, E., Balven, H., & Lewis-Kenedi, C. (2006). Structure of the San Andreas fault at SAFOD from P-wave tomography and fault-guided wave map**. Geophysical Research Letters, 33, L13314. https://doi.org/10.1029/2006GL025973

    Article  Google Scholar 

  • Marone, C. (1998). The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature, 391, 69–72.

    Article  Google Scholar 

  • McBride, J. H., & Brown, L. D. (1986). Reanalysis of the COCORP deep seismic imaging of steeply dip** structure near the San Andreas fault, Parkfield, California, Bull Seism. Society America, 76, 1668–1686.

    Google Scholar 

  • Michelini, A., & McEvilly, T. V. (1991). Seismological studies at Parkfield, I, Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization. Bulletin of the Seismological Society of America, 81, 524–552.

    Google Scholar 

  • Mooney, W. D., & Ginzburg, A. (1986). Seismic measurements of the internal properties of fault zones, Pure Appl. Geophysics, 124, 141–157.

    Google Scholar 

  • Nadeau, R. M., & McEvilly, T. V. (1997). Seismological Studies at Parkfield V: Characteristic microearthquake sequences as fault-zone drilling targets. Bulletin Seismological Society of America, 87, 1463–1472.

    Article  Google Scholar 

  • Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysics Research Solid Earth, 114, B07302.

    Google Scholar 

  • Nur, A. (1972). Dilatancy, pore fluid, and premonitory variations of ts/tp travel times. Bulletin Seismological Society of America, 62, 1217–1222.

    Article  Google Scholar 

  • Oglesby, D. D., Day, S. M., Li, Y. G., & Vidale, J. E. (2003). The 1999 Hector Mine earthquake: The dynamics of a branched fault system. Bulletin Seismological Society of America, 93, 2459–2476.

    Article  Google Scholar 

  • Papageorgiou, A. S., & Aki, K. (1983). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong motion, I, description of the model. Bulletin of the Seismological Society of America, 73, 693–722.

    Article  Google Scholar 

  • Perry, S. M., Lambert, V., & Lapusta, N. (2020). Nearly magnitude-invariant stress drops in simulated crack-like earthquake sequences on rate-and-state faults with thermal pressurization of pore fluids. Journal of Geophysics Research Solid Earth, 125, e2019JB018597.

    Google Scholar 

  • Rader, D., Schott, W., Dresen, L., & Ruter, H. (1985). Calculation of dispersion curves and amplitude-depth distributions of Love channel waves in horizontally-layered media. Geophysical Prospecting, 33, 800–816.

    Article  Google Scholar 

  • Raleigh, C. B. (1977). Frictional heating, dehydration and earthquake stress drops. In Proceedings of conference II: Experimental studies of rock friction with application to earthquake prediction (pp. 291–304). USGS, Menlo Park, California.

    Google Scholar 

  • Scholz, C. H. (1990). The mechanics of earthquakes and faulting. Cambridge University Press.

    Google Scholar 

  • Shakal, A. F., Graizer, V. G., Huang, M., Borcherdt, R., Haddadi, H. R., Lin, K. W., Stephens, C., & Roffers, P. (2005). Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake. Seismological Research Letters, V76(1), 27–40.

    Google Scholar 

  • Shaw, B. E. (2006). Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking hazard. Journal of Geophysical Research, 111(B08302), 1–14. https://doi.org/10.1029/2005JB004093

    Article  Google Scholar 

  • Sibson, R. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society of London, 133, 191–213.

    Article  Google Scholar 

  • Sleep, N. H., Richardson, E., & Marone, C. (2000). Physics of friction and strain rate localization in synthetic fault gouge. Journal of Geophysical Research, 105, 25875–25890.

    Article  Google Scholar 

  • Spudich, P., & Olsen, K. B. (2001). Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California. Geophysical Research Letters, 28, 2533–2536.

    Article  Google Scholar 

  • Thurber, C. H., Roecker, S., Lutter, W., & Ellsworth, W. (1996). Imaging the San Andreas fault with explosion and earthquake sources. Eos, 77, 45.

    Article  Google Scholar 

  • Thurber, C., Roecker, S., Zhang, H., Baher, S., & Ellsworth, W. (2004). Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophysics Research Letter, 31, L12S02. https://doi.org/10.1029/2003GL019398

    Article  Google Scholar 

  • Thurber, C., Zhang, H., Waldhauser, F., Hardbeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, Region. Bulletin Seismological Society, 96, S38–S49. https://doi.org/10.1785/0120050825

  • Unsworth, M., Malin, P., Egbert, G., & Booker, J. (1997). Internal structure 260 of the San Andreas fault at Parkfield, CA. Geology, 356– 362.

    Google Scholar 

  • Vidale, J. E. (1989). Finite-difference seismograms for SH waves. Bulletin Seismological Society of America, 78, 1765–1782.

    Google Scholar 

  • Vidale, J. E., & Li, Y. G. (2003). Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature, 421, 524–526.

    Article  Google Scholar 

  • Zoback, M. D., Hickman, S., & Ellsworth, W. L. (2007). The role of fault zone drilling. In H. Kanamori (Ed.), Earthquake seismology. Treatise on geophysics (Vol. 4, pp. 649–679). Elsevier.

    Google Scholar 

  • Zoback, M., Hickman, S., & Ellsworth, W. (2008). In-situ fault zone observations. EarthScope National Office, Oregon State University.

    Google Scholar 

Download references

Acknowledgements

The scientific experiments carried out at the San Andreas Fault at Parkfield, California and reviewed in this article were supported by multiple grants of the U.S. National Science Foundation and Geological Survey, and the Southern California Earthquake Center (SCEC) in the past decades. SCEC is funded by NSF and USGS Cooperative Agreements. The author thanks many researchers and graduate students from multiple institutions for their collaborations and joining in this long-tern research project and field experiments, including the late Professor Keiiti. Aki, P. Malin, W. Ellsworth, C. Thurber, M. Zoback, S. Hickman, J. Vidale, C. Marone, W.H.K. Lee, E. Cochran, P. Chen, D. Adams, F. Xu, T. Burdette, K. Gross, M. Alvarez, S. Roecker, M. Rymer, R. Catchings, A. Snyder, R. Russell, L. Powell, B. Nadeau, N. Boness, and D. McPhee. Special thanks to SAFOD PIs for their coordination of our experiments to seismically characterize the SAFOD drill site, and to the IRIS for the use of PASSCAL instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Higher Education Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, YG. (2022). Characterization of the San Andreas Fault by Fault-Zone Trapped Waves at Seismic Experiment Site, Parkfield, California: A Review. In: Li, YG., Zhang, Y., Wu, Z. (eds) China Seismic Experimental Site . Springer, Singapore. https://doi.org/10.1007/978-981-16-8607-8_11

Download citation

Publish with us

Policies and ethics

Navigation