Advancement in Crops and Agriculture by Nanomaterials

  • Chapter
  • First Online:
Synthesis and Applications of Nanoparticles
  • 1011 Accesses

Abstract

Agriculture is an important sector that provides immense opportunities for development and livelihood for over half of the world’s population. Globally, India is the second leading country in the production of agricultural commodities. The agricultural sector is confronted with huge issues such as rapid climatic change, a decline in soil fertility, nutrient deficiency, excessive use of chemicals and pesticides, and the presence of toxic metals in soil. However, the world population growth has subsequently increased the food demand. Nanomaterials have gotten a lot of attention in recent decades due to their multiple applications in industries like health, chemistry, energy, and textiles. Nanomaterials have recently been explored as an alternative approach to control plant pests, provide nutrients to soil, and help in the protection of the environment. Several nanosensors have been used for the detection and monitoring of plant illnesses, pesticide residues, pH, and soil fertility. Therefore, in this chapter, we highlight the role of nanomaterials in disease management, crop protection, and the development of sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Azeim MM, Sherif MA, Hussien MS, Tantawy IAA, Bashandy SO (2020) Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecol Sin 40:388–397

    Article  Google Scholar 

  • Abd-Elrahman SH, Mostafa MAM (2015) Applications of nanotechnology in agriculture: an overview. Egypt J Soil Sci 55(2):197–214

    Google Scholar 

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanobiofungicides: is it the next-generation of fungicides? J Nanotechnol Mater Sci. https://doi.org/10.15436/2377-1372.15.0

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral, nutrition, health and interactions with soil microflora. J Agric Food Chem 66:8647–8661

    Article  CAS  PubMed  Google Scholar 

  • Adamu A, Ahmad K, Siddiqui Y, Ismail IS, Asib N, Kutawa AB, Adzmi F, Ismail MR, Berahim Z (2021) Ginger essential oils-loaded nanoemulsions: potential strategy to manage bacterial leaf blight disease and enhanced rice yield. Molecules 26(13):3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad K, Pan W (2015) Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J Eur Ceram Soc 35:663–671

    Article  CAS  Google Scholar 

  • Ahmad F, Siddiqui MA, Babalola OO, Wu H-F (2012) Biofunctionalization of nanoparticles assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria. Biosens Bioelectron 35(1):235–242

    Article  CAS  PubMed  Google Scholar 

  • Ahmad H, Venugopal K, Rajagopal K, De Britto S, Nandini B, Pushpalatha HG, Konappa N, Udayashankar AC, Geetha N, Jogaiah S (2020) Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules 10(3):425

    Article  CAS  PubMed Central  Google Scholar 

  • Alam A, Rizvi AH, Verma K, Gautam C (2014) The changing scenario in India Agriculture: a review. Int J Sci Res Agric Sci 1(7):118–127

    Google Scholar 

  • Al-Juthery HWA et al (2021) Intelligent, nano-fertilizers: a new technology for improvement nutrient use efficiency (article review). IOP Conf Ser Earth Environ Sci 735:012086

    Article  Google Scholar 

  • Alshehddi LAA, Bokhari N (2020) Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the south-western regions in Saudi Arabia. Saudi J Biol Sci 27(1):574–580

    Article  CAS  Google Scholar 

  • Anand R, Bhagat M (2019) Silver nanoparticles (AgNPs): as nanopesticides and nanofertilizers. MOJ Biol Med 4(1):19–20. https://doi.org/10.15406/mojbm.2019.04.00107

    Article  Google Scholar 

  • Anastasios M, Nektarios K, Constantinos C (2019) Nano-fungicides against plant pathogens: copper, silver and zinc NPs. Geophys Res Abstr 21:1

    Google Scholar 

  • Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerra Sierra BE, Muñoz-Florez JE, Erazo-Castillo LA, RodrĂ­guez-Páez JE (2019) ZnO-based nanofungicides: synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Mater Sci Eng C 98:808–825

    Article  CAS  Google Scholar 

  • Arjun KM (2013) Indian agriculture—status, importance, and role in Indian economy. Int J Agric Food Sci Technol 4(4):343–346

    Google Scholar 

  • Banotra M, Kumar A, Sharma BC, Nandan B, Verma A, Kumar R, Gupta V, Bhagat S (2017) Prospectus of use of nanotechnology in agriculture—a review. Int J Curr Microbiol App Sci 6(12):1541–1551

    Article  CAS  Google Scholar 

  • Bao J, Hou C, Chen M, Li J, Huo D, Yang M, Luo X, Lei Y (2015) Plant esterase—chitosan/gold nanoparticles—graphene nanosheet composite-based biosensor for the detection of organophosphate pesticides. J Agric Food Chem 63(47):10319–10326

    Article  CAS  PubMed  Google Scholar 

  • Bratovcic A, Hikal WM, Said-Al Ahl HAH, Tkachenoko KG et al (2021) Nanopesticides and nanofertilizers and agricultural development: scopes, advances and applications. Open J Ecol. https://doi.org/10.4236/oje.2021.114022

  • Chang PFL, Chang TH, Liu YW, Chen CC, Li WY, Chung WH, Lin JJ, Huang JW (2020) Effect of nanomaterials on seedling growth and disease control. Acta Hortic 1269:269–272. https://doi.org/10.17660/ActaHortic.2020.1269.36

    Article  Google Scholar 

  • Chidambaram R, Abigail EA (2017) In: Seehra MS (ed) Nanotechnology in herbicide resistance, nanostructured materials-fabrication to applications. IntechOpen. https://doi.org/10.5772/intechopen.355

    Chapter  Google Scholar 

  • Chinnamuthu CR, Kokiladevi E (2007) Weed management through nanoherbicide. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Application of nanotechnology in agriculture. Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Deshpande T (2017) State of agriculture in India. PRS Legislative Research. https://prsindia.org/policy/analytical-reports/state-agriculture-india. Accessed 15 Dec 2021

  • Dhillon NK, Mukhopadhyay SS (2015) Nanotechnology and allelopathy: synergism in action. J Crop Weed 11(2):187–191

    Google Scholar 

  • Dileep Kumar G, Natarajan N, Nakkeeran S (2016) Antifungal activity of nanofungicide trifloxystrobin 25% + tebuconazole 50% against Macrophomina phaseolina. Afr J Microbiol Res 10(4):100–105

    Article  CAS  Google Scholar 

  • Elizabath A, Babychan M, Mathew AM, Syriac GM (2019) Application of nanotechnology in agriculture. Int J Pure Appl Biosci 7(2):131–139

    Article  Google Scholar 

  • EPA (2007) Nanotechnology white paper. US Environmental Protection Agency Report. EPA100/B-07/001, Washington DC 20460, USA

    Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhang Q, Liu Q, Zhu Z (2018) Applications of nanoemulsions in formulation of pesticides. In: Mahdi Jafari S, McClements DJ (eds) Nanoemulsions: formulation, applications, and characterization. Academic, Waltham, pp 379–413. https://doi.org/10.1016/B978-0-12-811838-2.00012-6

    Chapter  Google Scholar 

  • Ghazy NA, Abd El-Hafez OA et al (2021) Impact of silver nanoparticles and two biological treatments to control soft rot disease in sugar beet (Beta vulgaris L). Egypt J Biol Pest Control 31:3

    Article  Google Scholar 

  • Giraldo JP, Wu H, Newkirk GM, Kruss S (2019) Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol 14:541–553

    Article  CAS  PubMed  Google Scholar 

  • Hasan Dad Ansari M, Lavhale S, Kalunke RM, Srivastava PL, Pandit V, Gade S, Yadav S, Laux P, Luch A, Gemmati D, Zamboni P, Singh AV (2020) Recent advances in plant nanobionics and nanobiosensors for toxicological applications. Curr Nanosci 16(1):27–41

    Article  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • He Y, Xu B, Li W, Yu H (2015) Silver nanoparticles based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63(11):2930–2934

    Article  CAS  PubMed  Google Scholar 

  • He Y, **ao S, Dong T, Nie P (2019) Gold nanoparticles for qualitative detection of deltamethrin and carbofuran residues in soil by surface enhanced Raman scattering (SERS). Int J Mol Sci 20(7):1731

    Article  CAS  PubMed Central  Google Scholar 

  • Heinisch M, Jácome J, Miricescu D (2019) Current experience with application of metal-based nanofertilizers. In: MATEC Web of Conferences, vol 290, p 03006

    Google Scholar 

  • Hongyun C, Wenjun Z, Quinsheng G, Qing C, Shiming L, Shuifang Z (2008) Real time Taqman RT-PCR assay for the detection of Cucumber green mottle mosaic virus. J Virol Methods 149(2):326–329

    Article  PubMed  CAS  Google Scholar 

  • https://croplife.org/news/kee**-indias-pests-in-line/. Accessed 10 Sept 2021

  • https://www.tractorjunction.com/blog/top-10-agriculture-states-in-india/. Accessed 7 July 2021

  • Hussain T (2017) Nanotechnology: diagnosis of plant diseases. Agric Res Technol: Open Access J 10(1):555777

    Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivani R, Nejad SHS, Ghahraman B, Astaraei AR, Feizi H (2018) Role of bulk and nanosized SiO2 to overcome salt stress during fenugreek germination (Trigonella foenum-graceum L.). Plant Signal Behav 13(7):e1044190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jhansi K, Jayarambabu N, Paul Reddy K, Manohar Reddy N, Suvarna RP, Rao KV, Kumar VR, Rajendar V (2017) Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea) seed germination. 3 Biotech 7(4):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phyopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  PubMed  Google Scholar 

  • Kahyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. Nanosci Food Agric 2:253–276

    Article  Google Scholar 

  • Kale SK, Parishwad GV, Husainy ASN, Patil AS (2021) Emerging agriculture applications of silver nanoparticles. ES Food Agroforest 3:17–22

    CAS  Google Scholar 

  • Kannan M, Elango K, Tamilnayagan T, Preetha S, Kasivelu G (2020) Impact of nanomaterials on beneficial insects in agricultural ecosystem. In: Nanotechnology for food, agriculture, and environment. pp 373–393

    Google Scholar 

  • Khaledian S, Nikkhah M, Shams-bakhshn M et al (2017) A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J Gen Plant Pathol 83:231–239

    Article  CAS  Google Scholar 

  • Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim W, Chung H (2020) Effects of silver graphene oxide on seed germination and early growth of crop species. PeerJ 8:e8387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar M (2019) Agriculture: status, challenges, policies, and strategies for India. Int J Eng Res Technol 8(12):1–5

    CAS  Google Scholar 

  • Kumar V, Arora K (2020) Trends in nano-inspired biosensors for plants. Mater Sci Energy Technol 3:255–273

    CAS  Google Scholar 

  • Kumari S, Kumaraswamy RV, Choudhary RC et al (2018) Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci Rep 8:6650. https://doi.org/10.1038/s41598-018-24871-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau HY, Wu H, Wee EJH, Trau M, Wang Y, Botella JR (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:38896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemire JA, Harrison JJ, Turnr RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  PubMed  Google Scholar 

  • Levar O (2007) Effect of silver nanoparticles on tomato plants and development of a plant monitoring system (PMS). A thesis. http://hdl.handle.net/10415/109

  • Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q (2020) Agricultural nanodiagnostics for plant disease: recent advances and challenges. Nanoscale Adv 2:3083–3094

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. https://doi.org/10.1038/srep05686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Lal R (2015) Potential of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lizzi D, Mattiello A, Piani B, Fellet G, Adamiano A, Marchiol L (2020) Germination and early development of three spontaneous plant species exposed to nanoceria (nCeO2) with different concentrations and particle sizes. Nanomaterials (Basel) 10(12):2534

    Article  CAS  Google Scholar 

  • Lobert S, Heil PD, Namba K, Stubbs G (1987) Preliminary X-ray fiber diffraction studies of Cucumber green mottle mosaic virus, watermelon strain. J Mol Biol 196(4):935–938

    Article  CAS  PubMed  Google Scholar 

  • Lodriche SS, Soltani S, Mirzazadeh R (2012) U.S. Patent application no. 13/406, 538

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine Max and its mechanism. Soybean Sci 3:168–172

    Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment, plant, soil and microbes. Springer, Cham, pp 253–269

    Book  Google Scholar 

  • Makarovsky D, Fadeev L, Salam BB, Zelinger E, Matan O, Inbar J, Jurkevitch E, Gozin M, Burdman S (2018) Silver nanoparticles complexed with bovine submaxillary mucin possess strong antibacterial activity and protect against seedling infection. Appl Environ Microbiol 84(4):e02212–e02217

    Article  PubMed  PubMed Central  Google Scholar 

  • Mali SC, Raj S, Trivedi R (2020) Nanotechnology a novel approach to enhance crop productivity. Biochem Biophys Rep 24:100821

    Google Scholar 

  • Mane PC, Shinde MD, Varma S, Chaudhari BP, Fatehmulla A, Shahabuddin M, Amalnerkar DP, Aldhafiri AM, Chaudhari RD (2020) Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci Rep 10:4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, Derosa M (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. Springer, Berlin, pp 25–67. https://doi.org/10.1007/978-3-319-14024-7_2

    Book  Google Scholar 

  • Mir S, Sirousmehr A, Shirmohammadi E (2015) Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of Forage sorghum (Speed feed hybrid). Int J Biosci 6(4):157–164

    Article  CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Singh B, Naqvi A et al (2017) Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep 7:45154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X (2008) Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm 353(1–2):270–276

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair AS, Durga C (2021) Introduction of nanoparticles in agriculture. Biotica Res Today 3(5):321–323

    Google Scholar 

  • Nejatzadeh F (2021) Effect of silver nanoparticles on salt tolerance of Satureja hortensis I. during invitro and in vivo germination tests. Heliyon 7(2):e05981

    Article  PubMed  PubMed Central  Google Scholar 

  • Ombodi A, Saigusa M (2000) Broadcast application vs band application of polyolefin-coated fertilizer on green peppers grown on andisol. J Plant Nutr 23:1485–1493

    Article  CAS  Google Scholar 

  • Pandey G (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299–307

    Article  Google Scholar 

  • Pandey K, Anas M, Hicks VK, Green MJ, Khodakovskaya MV (2019) Improvement of commercially valuable traits of industrial crops by application of carbon-based Nanomaterials. Sci Rep. 9:19358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paramasivan C, Pasupathi R (2016) Performance of agro-based industries in India. Natl J Adv Res 2(6):25–28

    Google Scholar 

  • PĂ©rez de Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  CAS  Google Scholar 

  • Perumal AB, Li X, Su Z, He Y (2021) Preparation and characterization of a novel green tea essential oil nanoemulsion and its antifungal mechanism of action against Magnaporthe oryzae. Ultrason Sonochem 76:105649. https://doi.org/10.1016/j.ultsonch.2021.105649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati HR, Datta I (2014) Future of Indian agriculture: prospects and challenges. In: Agriculture situation in India

    Google Scholar 

  • Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol App Sci 7(2):3325–3335

    Article  CAS  Google Scholar 

  • Rafie J, Kumar R (2020) A review on scenario of agriculture in India and punjab1900-2019. Int J Curr Microbiol App Sci 9(6):4149–4170

    Article  Google Scholar 

  • Rai M, Ingle AP, Pandit R, Paralikar P, Shende S, Gupta I, Biswas JK, SilvĂ©rio da Silva S (2018) Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. De Gruyter. https://doi.org/10.1515/ntrev-2018-0031

    Book  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Ĺ˝ivčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90

    Article  PubMed  PubMed Central  Google Scholar 

  • Razmi A, Golestanipour A, Nikkhah M, Bagheri A, Shamsbakhsh M, Malekzadeh-Shafaroudi S (2019) Localized surface Plasmon resonance biosensing of tomato yellow leaf curl virus. J Virol Methods 267:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Yuan X, Huang X, Wen W, Zhao Y, Chen W (2013) In vivo monitoring of oxidative burst on aloe under salinity stress using haemoglobin and single walled carbon nanotubes modified carbon fiber ultramicroelectrode. Biosens Bioelectron 50:318–324

    Article  CAS  PubMed  Google Scholar 

  • Sap-lam N, Homklinchan C, Larpudomlert R et al (2010) UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136

    Article  Google Scholar 

  • Shang H, **e Y, Zhou X, Qian Y, Wu J (2011) Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol J 8:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shebl A, Hassan AA, Salama DM, Abd El-Aziz ME, Abd Elwahed MSA (2019) Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. J Nanomater 2019:3476347. https://doi.org/10.1155/2019/3476347

    Article  CAS  Google Scholar 

  • Siddhartha, Verma A, Bashyal BM, Gogoi R, Kumar R (2020) New nano-fungicide for the management of sheath blight (Rhizoctonia solani) in rice. Int J Pest Manag. https://doi.org/10.1080/09670874.2020.1818870

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Singh MD, Chirag G, Prakash PO, Mohan MH, Prakasha G, Vishwajith (2017) Nanofertilizer is a new way to increase nutrient efficiency in crop production. Int J Agric Sci 9(7):3831–3833

    CAS  Google Scholar 

  • Singh R, Kumar N, Mehra R, Kumar H, Singh VP (2020a) Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ Anal Chem 26:e00086

    Article  CAS  Google Scholar 

  • Singh R, Thakur P, Thakur A, Kumar H, Chawla P, Rohit JV, Kaushik R, Kumar N (2020b) Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: a review. Int J Environ Anal Chem 101(15):3006–3022

    Article  CAS  Google Scholar 

  • Swarnkar RK, Pandey JK, Soumya KK, Dwivedi P, Sundaram S, Prasad S, Gopal R (2016) Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium. Appl Phys A 122:704

    Article  CAS  Google Scholar 

  • SzČŤllČŤsi R, Molnár A, Kondak S, Kolbert Z (2020) Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. Plants (Basel) 9(12):1745

    Article  CAS  Google Scholar 

  • Tang G, Tian Y, Niu J, Tang J, Yang J, Gao Y, Chen X, Li X, Wang H, Cao Y (2021) Development of carrier-free self-assembled nanoparticles based on fenhexamid and polyhexamethylene biguanide for sustainable plant disease management. Green Chem 23:2531–2540

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Thipe VC, Keyster M, Katti KV (2018) Sustainable nanotechnology: mycotoxin detection and protection. In: Nanobiotechnology applications in plant protection. pp 323–349

    Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redevelo** the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivekanandhan N, Duraisamy A (2012) Ecological impact of pesticides principally organochlorine insecticide endosulfan: a review. Univers J Environ Res Technol 2(5):369–376

    CAS  Google Scholar 

  • Wagner G, Korenkov V, Judy JD, Bertsch PM (2016) Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials 6:50. https://doi.org/10.3390/nano6030050

    Article  CAS  PubMed Central  Google Scholar 

  • www.ibef.org/industry/agriculture-india.apex. Accessed 7 July 2021

  • www.nanoshel.com/silver-nanoparticles-agriculture

  • Yadav AS, Srivastava DS (2015) Application of nanotechnology in weed management: a review. Res Rev: J Crop Sci Technol 4(2):21–23

    CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. pp 513–516

    Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17

    Article  CAS  Google Scholar 

  • Zeng L, Liu Y, Pan J, Liu X (2019) Formulation and evaluation of norcantharidin nanoemulsions against the Plutella xylostella (Lepidoptera: Plutellidae). BMC Biotechnol 19:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Si T, Liu J, Zhou G (2019) In-situ silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS carbaryl pesticides detection. Nanomaterials (Basel) 9(3):384

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar F, Navarro M, Ashraf M, Akram NA, MunnĂ©-Bosch S (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270. https://doi.org/10.1016/j.plantsci.2019.110270

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Sharma, K., Singh, R., Kumar, N. (2022). Advancement in Crops and Agriculture by Nanomaterials. In: Thakur, A., Thakur, P., Khurana, S.P. (eds) Synthesis and Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_14

Download citation

Publish with us

Policies and ethics

Navigation