An Internet of Things-Inspired Dual-Level Boost Converter for BLDC-Driven Photovoltaic Water Pum** Applications

  • Chapter
  • First Online:
DC—DC Converters for Future Renewable Energy Systems

Abstract

This research paper proposes Internet of things (IoT)-based maximum power point tracker for brushless DC motor (BLDC)-driven photovoltaic water pum** system. Moreover, a dual-level boost converter is employed to obtain high output voltage with enhanced efficiency and has economical operation compared to classical boost converter. The speed control of BLDC motor is carried out using IoT based Web monitoring system. The IoT based maximum power point tracker has rapid convergence speed with enhanced reliability and low-cost monitoring platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Priyadarshi, N., Padmanaban, S., Maroti, P.K., Sharma. A.: An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst. J. 1–11 (2018)

    Google Scholar 

  2. Priyadarshi, N., Padmanaban, S., Bhaskar, M.S., Blaabjerg, F., Sharma, A.: A fuzzy SVPWM based inverter control realization of grid integrated PV-wind system with FPSO MPPT algorithm for a grid-connected PV/Wind power generation system: hardware implementation. IET Electric Power Appl. 1–12 (2018)

    Google Scholar 

  3. Priyadarshi, N., Kumar, V., Yadav, K., Vardia, M.: An experimental study on zeta buck-boost converter for application in PV system. In: Handbook of Distributed Generation. Springer https://doi.org/10.1007/978-3-319-51343-0_13

  4. Priyadarshi, N., Sharma, A.K., Priyam, S.: An experimental realization of grid-connected PV system with MPPT using dSPACE DS 1104 control board. In: Advances in Smart Grid and Renewable Energy. Lecture Notes in Electrical Engineering, vol. 435, Springer, Singapore (2018)

    Google Scholar 

  5. Priyadarshi, N., Sharma, A.K., Priyam, S.: Practical realization of an improved photovoltaic grid integration with MPPT. Int. J. Renew. Energy Res. 7(4) (2017)

    Google Scholar 

  6. Priyadarshi, N., Sharma, A.K., Azam, F.: A hybrid firefly-asymmetrical fuzzy logic controller based MPPT for PV-wind-fuel grid integration. Int. J. Renew. Energy Res. 7(4) (2017)

    Google Scholar 

  7. Priyadarshi, N., Anand, A., Sharma, A.K., Azam, F., Singh, V.K., Sinha, R.K.: An Experimental implementation and testing of GA based maximum power point tracking for PV system under varying ambient conditions using dSPACE DS 1104 controller. Int. J. Renew. Energy Res. 7(1), 255–265 (2017)

    Google Scholar 

  8. Priyadarshi, N., Padmanaban, S., Mihet-Popa, L., Blaabjerg, F., Azam, F.: Maximum power point tracking for brushless DC motor-driven photovoltaic pum** systems using a hybrid ANFIS-FLOWER pollination optimization algorithm. MDPI Energies 11(1), 1–16 (2018)

    Google Scholar 

  9. Priyadarshi, N., Azam, F., Bhoi, A.K., Alam, S.: An artificial fuzzy logic intelligent controller based MPPT for PV grid utility. In: Lecture Notes in Networks and Systems 46. https://doi.org/10.1007/978-981-13-1217-5_88

  10. Padmanaban, S., Priyadarshi, N., Holm-Nielsen, J.B., Bhaskar, M.S., Azam, F., Sharma, A.K.: A novel modified sine-cosine optimized MPPT algorithm for grid integrated PV system under real operating conditions. IEEE Access 7, 10467–10477 (2019). https://doi.org/10.1109/ACCESS.2018.2890533

    Article  Google Scholar 

  11. Padmanaban, S., Priyadarshi, N., Holm-Nielsen, J.B., Bhaskar, M.S., Hossain, E., Azam, F.: A hybrid photovoltaic-fuel cell for grid integration with JAYA-based maximum power point tracking: experimental performance evaluation. IEEE Access 7, 82978–82990 (2019). https://doi.org/10.1109/ACCESS.2019.2924264

    Article  Google Scholar 

  12. Priyadarshi, N., Padmanaban, N., Holm-Nielsen, J.B., Blaabjerg, F., Bhaskar, M.S.: An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 14(1), 1218–1229 (2020). https://doi.org/10.1109/JSYST.2019.2949083

    Article  Google Scholar 

  13. Priyadarshi, N., Padmanaban, N., Bhaskar, M.S., Blaabjerg, F., Holm-Nielsen, J.B., Azam, F., Sharma, A.K.: A hybrid photovoltaic-fuel cell-based single-stage grid integration with Lyapunov control scheme. IEEE Syst. J. https://doi.org/10.1109/JSYST.2019.2948899

  14. Priyadarshi, N., Bhaskar, M.S., Padmanaban, N., Blaabjerg, F., Azam, F.: New CUK–SEPIC converter based photovoltaic power system with hybrid GSA–PSO algorithm employing MPPT for water pum** applications. IET Power Electron. 1–0 (2020). https://doi.org/10.1049/iet-pel.2019.1154

  15. Priyadarshi, N., Padmanaban, N., Holm-Nielsen, J.B., Bhaskar, M.S., Azam, F.: Internet of things augmented a novel PSO-employed modified zeta converter-based photovoltaic maximum power tracking system: hardware realisation. IET Power Electron. 1–0 (2020). https://doi.org/10.1049/iet-pel.2019.1121

  16. Kamalapathi, K., Priyadarshi, N., Padmanaban, S., Holm-Nielsen, J.B., Azam, F., Umayal, C., Ramachandaramurthy, V.K.: A hybrid moth-flame fuzzy logic controller based integrated Cuk converter fed brushless DC motor for power factor correction. Electronics 7, 288 (2018)

    Article  Google Scholar 

  17. Priyadarshi, N., Padmanaban, S., Ionel, D., Mihet-Popa, L., Azam, F.: Hybrid PV-wind, micro-grid development using quasi-Z-source inverter modeling and control—experimental investigation. Energies 11(9), 2277 (2018). https://doi.org/10.3390/en11092277

    Article  Google Scholar 

  18. Priyadarshi, N., Ramachandaramurthy, V.K., Padmanaban, S., Azam, F.: An ant colony optimized MPPT for standalone hybrid PV-wind power system with single Cuk converter. Energies 12(1), 167 (2019). https://doi.org/10.3390/en12010167

    Article  Google Scholar 

  19. Priyadarshi, N., Sharma, A.K., Bhoi, A.K., Ahmad, S.N., Azam, F., Priyam, S.: A practical performance verification of AFLC based MPPT for standalone PV power system under varying weather condition. Int. J. Eng. Technol. 7(2), 338–343 (2018)

    Article  Google Scholar 

  20. Priyadarshi, N., Azam, F., Bhoi, A.K., Sharma, A.K.: A multilevel inverter-controlled photovoltaic generation. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_8

  21. Priyadarshi, N., Azam, F., Bhoi, A.K., Sharma, A.K.: Dynamic operation of grid-connected photovoltaic power system. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_13

  22. Priyadarshi, N., Azam, F., Bhoi, A.K., Sharma, A.K.: A proton exchange membrane-based fuel cell integrated power system. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_18

  23. Priyadarshi, N., Azam, F., Bhoi, A.K., Sharma A.K.: A closed-loop control of fixed pattern rectifier for renewable energy applications. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_25

  24. Priyadarshi, N., Azam, F., Bhoi, A.K., Sharma, A.K.: A four-switch-type converter fed improved photovoltaic power system. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_29

  25. Vardia, M., Priyadarshi, N., Ali, I., Azam, F., Bhoi, A.K.: Maximum power point tracking for wind energy conversion system. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_36

  26. Azam, F., Priyadarshi, N., Nagar, H., Kumar, S., Bhoi, A.K.: An overview of solar-powered electric vehicle charging in vehicular Adhoc network. In: Patel, N., Bhoi, A.K., Padmanaban, S., Holm-Nielsen, J.B. (eds) Electric Vehicles. Green Energy and Technology. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9251-5_5

  27. Vardia, M., Priyadarshi, N., Ali, I., Azam, F., Bhoi, A.K.: Design of wind energy conversion system under different fault conditions. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_41

  28. Choudhary, T., Priyadarshi. N., Kumar, P., Azam, F., Bhoi, A.K.: A fuzzy logic control based vibration control system for renewable application. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, G.S. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4246-6_38

  29. Yusof, Z,M., Billah, M.M., Kadir, K., Ali, A.M.M.: A temperature-based omnidirectional solar tracking system for IoT application. In: Proceedings of IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Kuala Lumpur, Malaysia, pp. 1–4 (2019). https://doi.org/10.1109/ICSIMA47653.2019.9057301

  30. Meng, X., An, Y., Wang, H., Yao, Q., Liang, C.: Tracking the maximum power point of photovoltaic power generation based on self-coding neural network. In: Proceedings of Chinese Control And Decision Conference (CCDC), Nanchang, China, pp. 592–597 (2019). https://doi.org/10.1109/CCDC.2019.8832919

  31. Altun, S.N., Dörterler, M., Dogru, I.A.: Fuzzy logic based lighting system supported with IoT for renewable energy resources. In: Proceedings of Innovations in Intelligent Systems and Applications Conference (ASYU), Adana, pp. 1–4 (2018). https://doi.org/10.1109/ASYU.2018.8554026

  32. İNCİ, M.: Design and analysis of dual level boost converter based transformerless grid connected PV system for residential applications. In: Proceedings of 4th International Conference on Power Electronics and their Applications (ICPEA), Elazig, Turkey, pp. 1–6 (2019). https://doi.org/10.1109/ICPEA1.2019.8911177

  33. Kumar, R., Singh, B.: Grid Interactive solar PV-based water pum** using BLDC motor drive. IEEE Trans. Ind. Appl. 55(5), 5153–5165 (2019). https://doi.org/10.1109/TIA.2019.2928286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priyadarshi, N., Azam, F., Sanjeevikumar, P., Holm-Nielsen, J.B. (2022). An Internet of Things-Inspired Dual-Level Boost Converter for BLDC-Driven Photovoltaic Water Pum** Applications. In: Priyadarshi, N., Bhoi, A.K., Bansal, R.C., Kalam, A. (eds) DC—DC Converters for Future Renewable Energy Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4388-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4388-0_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4387-3

  • Online ISBN: 978-981-16-4388-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation