Genomics in Crop Improvement: Potential Applications, Challenges and Future Prospects

  • Chapter
  • First Online:
Agricultural Biotechnology: Latest Research and Trends

Abstract

Until recent past, genomics and bioinformatics were considered as different subjects and now their applications started yielding crop improvement. Though the resources are being added fast in public databases, the effective utilization of the available resources is yet to be attempted. The reasons behind the slow phase of genomics applications and generating resources and possible future path are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Fahad S, Han Q (2019) Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. Peer J 7:e7793

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genomics 19(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Akohoue F, Achigan-Dako EG, Sneller C, Van Deynze A, Sibiya J (2020) Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. PLoS One 15(6):e0234769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Pearson AS (2021) Identification of salt tolerance QTL in a wheat RIL map** population using destructive and non-destructive phenoty**. Funct Plant Biol 48:131–140

    Article  CAS  PubMed  Google Scholar 

  • Asif MA, Pearson AS, Schilling RK, Roy SJ (2019) Opportunities for develo** salt-tolerant wheat and barley varieties. Ann Plant Rev 2:157–218

    Article  Google Scholar 

  • Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Pearson AS (2018) Map** of novel salt tolerance QTL in an excalibur × Kukri doubled haploid wheat population. Theor Appl Genet 131(10):2179–2196. https://doi.org/10.1007/s00122-018-3146-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baisakh N, Yabes J, Gutierrez A, Mangu V, Ma P, Famoso A, Pereira A (2020) Genetic map** identifies consistent quantitative trait loci for yield traits of rice under greenhouse drought conditions. Gene 11(1):62

    Article  CAS  Google Scholar 

  • Bansal M, **dal S, Wani SH, Ganie SA, Singh R (2021) Genome editing and trait improvement in wheat. In: Physiological, molecular, and genetic perspectives of wheat improvement. Springer, Cham, pp 263–283

    Chapter  Google Scholar 

  • Barik SR, Pandit E, Mohanty SP, Nayak DK, Pradhan SK (2020) Genetic map** of physiological traits associated with terminal stage drought tolerance in rice. BMC Genet 21(1):1–12

    Article  Google Scholar 

  • Batley J, Edwards D (2016) The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Curr Opin Plant Biol 30:78–81

    Article  PubMed  Google Scholar 

  • Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12:177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsogon A, Smouni A, Zouine M (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel) 11:272. https://doi.org/10.3390/genes11030272

    Article  CAS  Google Scholar 

  • Cai H, Tian S, Dong H, Guo C (2015) Pleiotropic effects of TaMYB3R1 on plant development and response to osmotic stress in transgenic Arabidopsis. Gene 558:227–234

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhu Y, Chen K, Shen C, Zhao X, Shabala S, Zhou M (2020) Identification of new QTL for salt tolerance from rice variety Pokkali. J Agr Crop Sci 206(2):202–213

    Article  CAS  Google Scholar 

  • Crain J, Bajgain P, Anderson J, Zhang X, DeHaan L, Poland J (2020) Enhancing crop domestication through genomic selection, a case study of intermediate wheatgrass. Front Plant Sci 11:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong L, Wang Q, Manik SMN, Song Y, Shi S, Su Y, Liu G, Liu H (2015) Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep 34:2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nikases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Ganie SA, Wani SH, Henry R, Hensel G (2021) Improving rice salt tolerance by precision breeding in a new era. Curr Opinion Plant Bio 60:101996

    Article  CAS  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M et al (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 12(5):877–894

    Article  Google Scholar 

  • Gosal SS, Wani SH (eds) (2020) Accelerated plant breeding, volume 1: cereal crops. Springer, Cham

    Google Scholar 

  • Hoang TML, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG (2015) Development of salinity tolerance in rice by constitutive overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu P, Zheng Q, Luo Q, Teng W, Li H, Li B, Li Z (2021) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol 21:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang G, Du X, Zhang H, Xu Z, Wang J, Wang G (2020) QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions. Crop J. https://doi.org/10.1016/j.cj.2020.10.004

  • Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-Epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in Rice. Front Plant Sci 9:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain Z, Yadav RK, Jat GS, Lata S, Kumar P, Tomar BS (2018) Development of marker assisted selection (MAS) based advanced derived lines for resistance to tomato leaf curl New Delhi virus in tomato. ICAR News Lett 24(4):1

    Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Phytol 191(4):915–925

    Article  CAS  PubMed  Google Scholar 

  • Jahan N, Zhang YU, Lv Y, Song M, Zhao C, Hu H, Guo L (2020) QTL analysis for rice salinity tolerance and fine map** of a candidate locusqSL7 for shoot length under salt stress. Plant Growth Reg 90(2):307–319

    Article  CAS  Google Scholar 

  • Kaur A, Neelam K, Kaur K et al (2020) Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 10:6571. https://doi.org/10.1038/s41598-020-62649-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GB, Nam YW (2013) A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S (2017) Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep 36(8):1187–1213

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Rana M, Kumar B, Chand S, Shiv A, Wani SH, Kumar S (2021) Genomic selection for wheat improvement. In: Physiological, molecular, and genetic perspectives of wheat improvement. Springer, Cham, pp 175–207

    Chapter  Google Scholar 

  • Li J, Aach J, Norville JE, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013b) Multiplex and homologous recombination-mediated plant genome editing via guideRNA/Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Sheen J (2013a) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang Z, Dong J, Wang T (2016) Over expression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environ Exp Bot 123:50–58

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Jiang S, Pan J, Cai G, Li D (2014) Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiol Biochem 84:22–31

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Zhao Y, Zhang R, ** of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol 17(1):140

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G (2017b) BdCIPK31, a Calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress, Front. Plant Sci 8:1184

    Google Scholar 

  • Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Jordan D (2019) The sorghum QTL atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132(3):751–766

    Article  PubMed  Google Scholar 

  • Meriç S, Ayan A, Atak Ç (2020) Molecular abiotic stress Tolerans strategies: from genetic engineering to genome editing era. In: Abiotic stress in plants. IntechOpen, London

    Google Scholar 

  • Moeinizade S, Kusmec A, Hu G, Wang L, Schnable PS (2020) Multi-trait genomic selection methods for crop improvement. Genetics 215(4):931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon SJ, Han SY, Kim DY, Yoon IS, Shin D, Byun MO, Bin Kwon H, Kim BG (2015) Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. Plant Mol Biol 89:421–431

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops – what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K (2017) Genome editing to improve abiotic stress responses in plants. Progress Mol Biol Trans Sci 149:99–109

    Article  CAS  Google Scholar 

  • Paixao FR, Gillet FX, Ribeiro TP, Bournaud C, Lourenco-Tessutti IT, Noriega DD, de Melo BP, de Almeida-Engler J, Grossi-de-Sa MF (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyl transferase. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-44571-y

    Article  CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Puram VRR, Ontoy J, Linscombe S, Subudhi PK (2017) Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salttolerant landrace Nona Bokra. J Here 108(6):658–670

    Google Scholar 

  • Salarpour M, Pakniyat H, Abdolshahi R, Heidari B, Razi H, Afzali R (2020) Map** QTL for agronomic and root traits in the Kukri/RAC875 wheat (Triticum aestivum L.) population under drought stress conditions. Euphytica 216:7. https://doi.org/10.1007/s10681-020-02627-5

    Article  CAS  Google Scholar 

  • Sander JD, Joung JK (2014a) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Joung JK (2014b) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S (2016) CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep 6:30278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable P, Ware D, Fulton R, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The b73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE et al (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang W, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, ** JJ, Qiu J, Gao C (2013a) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 3:686–688

    Article  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut Arachis diogoi confers abiotic stress tolerance in tobacco. PLoS One 11:e0150609. https://doi.org/10.1371/journal.pone.0150609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Sun J, ** of photosynthetic-related traits in rice under salt and alkali stresses. Euphytica, 215(9):1–14

    Article  CAS  Google Scholar 

  • Sunil H, Upadhyay D, Gajghate R, Shashikumara P, Chouhan D, Singh S et al (2020) QTL map** for heat tolerance related traits using backcross inbred lines in wheat (Triticum aestivum L.). Indian J Genet 80(3):242–249

    CAS  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff, S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protocols 1(5):2465–2477

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Küken A, Nikoloski Z (2020) Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth. Nat Commun 11(1):1–9

    Article  Google Scholar 

  • Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U et al (2020) QTL analysis and fine map** of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor Appl Genet 133(1):239–257

    Article  CAS  PubMed  Google Scholar 

  • Van Inghelandt D, Frey FP, Ries D, Stich B (2019) QTL map** and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8(11):1386

    Article  CAS  Google Scholar 

  • Vazquez-Pozos V, Serrano-Flores E, Cruz-Izquierdo S, Lobato-Ortiz R (2020) QTL associated with drought tolerance in a population of tropical maize using lines and test crosses. Rev Fitotec Mex 43(1):101–112

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus ・ domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  PubMed  Google Scholar 

  • Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134:384–393

    Article  CAS  Google Scholar 

  • Wani SH, Choudhary JR, Choudhary M, Rana M, Gosal SS (2020) Recent advances in genomics assisted breeding for drought stress tolerance in major cereals. J Cereal Res 12(1):1–12

    Article  Google Scholar 

  • Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate saltinduced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  CAS  PubMed  Google Scholar 

  • Xue YD, Warburton ML, Sawkins M, Zhang XH, Setter T, Xu YB et al (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Sandhu N, Majumder RR, Dixit S, Kumar S, Singh SP et al (2019) Epistatic interactions of major effect drought QTLs with genetic background loci determine grain yield of rice under drought stress. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Develo** salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J, Hu R, Zhou G (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958

    Article  CAS  PubMed  Google Scholar 

  • Yasin JK, Mishra BK, Pillai MA et al (2020) Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Sci Rep 10:17203. https://doi.org/10.1038/s41598-020-73140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SSA, Vanderschuren H, Qaim M et al (2019) New plant breeding technologies for food security. Science 363:1390–1391

    Article  CAS  PubMed  Google Scholar 

  • Zandipour M, Hervan EM, Azadi A, Khosroshahli M, Etminan A (2020) A QTL hot spot region on chromosome 1B for nine important traits under terminal drought stress conditions in wheat. Cereal Res Commun 2020:1–8

    Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang L, **a C, Zhao G, Jia J, Kong X (2016) The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang L, **a C, Zhao G, Liu J, Jia J, Kong X (2015a) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant 153:538–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015b) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genom 2015:875497. https://doi.org/10.1155/2015/875497

    Article  CAS  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Peng Y, Zhang J, Fang P, Wu B (2018) Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci 58(2):507–520

    Article  CAS  Google Scholar 

  • Zheng X, Wen X, Qiao L, Zhao J, Zhang X, Li X, Zhang S, Yang Z, Chang Z, Chen J, Zheng J (2019) A novel QTL QTrl.- saw-2D.2 associated with the total root length identified by linkage and association analyses in wheat (Triticum aestivum L.). Planta 3:1–15

    Google Scholar 

  • Zhong L, Chen D, Min D, Li W, Xu Z, Zhou Y, Li A, Chen M, Ma Y (2015) AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun 457:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Cheng Y, Yang Y, Li X, Supriyo B, Sun X, Yang Y (2016) Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis. Mol Biol Rep 43:957–966

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeshima Khan Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasin, J.K. et al. (2021). Genomics in Crop Improvement: Potential Applications, Challenges and Future Prospects. In: Kumar Srivastava, D., Kumar Thakur, A., Kumar, P. (eds) Agricultural Biotechnology: Latest Research and Trends . Springer, Singapore. https://doi.org/10.1007/978-981-16-2339-4_15

Download citation

Publish with us

Policies and ethics

Navigation