A Study on Retrial G-Queues Under Different Scenarios: A Review

  • Conference paper
  • First Online:
Proceedings of International Conference on Scientific and Natural Computing

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

This article aims to focus a study under different scenarios on retrial G-queues. In retrial queues, a customer makes an attempt, again and again, to avail the service on being rejected by the server whereas, in G-queues, a negative customer arrives only when the server is occupied with a positive customer and forces it to leave the system thereby causing an interruption in the service. From the past few decades, a lot of researchers are being attracted towards this field. Our investigation includes all the major research articles from reputed journals which have been published till now. The work is divided on the basis of different models and methodologies of queueing analysis along with various applications. Discrete-time retrial queues with negative customers are also discussed. Our main focus is to help and motivate all researchers who are willing to explore retrial queueing theory with negative customer arrival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguir S, Karaesmen F, Aksin OZ, Chauvet F (2004) The impact of retrials on call center performance. OR Spectrum 26:353–376. https://doi.org/10.1007/s00291-004-0165-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Aissani A (2010) An M/G/1 retrial queue with negative arrivals and unreliable server. Lecture Notes in engineering and computer science 1

    Google Scholar 

  3. Ammar SI, Rajadurai P (2019) Performance analysis of preemptive priority retrial queueing system with disaster under working breakdown services. Symmetry 11. https://doi.org/10.3390/sym11030419

  4. Anisimov VV, Artalejo JR (2001) Analysis of Markov multiserver retrial queues with negative arrivals. Queue Syst 39:157–182. https://doi.org/10.1023/A:1012796517394

    Article  MathSciNet  MATH  Google Scholar 

  5. Annaswamy MGS (2011) Retrial queueing system with priority services matrix geometric approach. Lambert

    Google Scholar 

  6. Artalejo JR, Corral AG (1998) Generalized birth and death processes with applications to queues with repeated attempts and negative arrivals. OR Spectrum 20:5–14. https://doi.org/10.1007/BF10545523

    Article  MathSciNet  MATH  Google Scholar 

  7. Artalejo JR, Corral AG (1999) Computation of the limiting distribution in queueing systems with repeated attempts and disasters. Rairo Operat Res 33:371–382. https://doi.org/10.1051/ro:1999113

    Article  MathSciNet  MATH  Google Scholar 

  8. Artalejo JR, Corral AG (2007) Modelling communication systems with phase type service and retrial times. IEEE Commun Lett 11:955–957. https://doi.org/10.1109/LCOMM.2007.070742

    Article  Google Scholar 

  9. Ayyappan G, Sekar G, Subramaniam AMG (2010) M/M/1 retrial queueing system with negative arrival under Erlang-K service by matrix geometric method. Appl Math Sci 4:2355–2367

    MathSciNet  MATH  Google Scholar 

  10. Ayyappan G, Sekar G, Subramaniam AMG (2011) Study of influences of negative arrival for single server retrial queueing system with coxian phase type service. QTNA, 53–59

    Google Scholar 

  11. Ayyappan G, Thamizhselvi P (2018) Transient analysis of \(M_{1}^{\text{x}} M_{2}^{\text{x}}\)/(G1,G2)/1 retrial queueing systems with priority services, working vacation and vacation interruption, emergency vacation, negative arrival and delayed repair. Int J Appl Comput Math 4

    Google Scholar 

  12. Berdjoudj B, Aissani D (2014) An analysis of the M/G/1 retrial queue with negative arrivals using a martingale technique. J Math Sci 196:11–14. https://doi.org/10.1007/s10958-103-1068-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhagat A, Jain M (2016) N-policy for MX/G/1 unreliable retrial G-queue with preemptive resume and multi services. J Operat Res Soc China 4:437–459. https://doi.org/10.1007/s40305-016-0128-0

    Article  MATH  Google Scholar 

  14. Chen P, Zhao G, Zhou Y (2014) An M/G/1 retrial queue with subject to disasters and N-policy vacation. Comput Model New Technol 18:509–515. https://doi.org/10.13140/R.G.2.1.4845.4480

    Article  Google Scholar 

  15. Corral AG, Artalejo JR (1999) On a single server retrial queue with negative arrivals and request repeated. J Appl Probab 36:907–918. jstor.org/stables/3215450

    Google Scholar 

  16. Dimitriou I (2013) A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations. Appl Math Model 37:1295–1309. https://doi.org/10.1016/j.apm.2012.04.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Divya A, Chandrika KU (2015) An MX/G/1 retrial G-queue with server breakdown. Int J Innov Res Sci Eng Technol 4

    Google Scholar 

  18. Do TV (2010) A new computational algorithm for retrial queues to cellular mobile systems with guard channels. Comput Ind Eng 59:865–872. https://doi.org/10.1016/j.cie.2010.08.017

    Article  Google Scholar 

  19. Do TV, Papp D, Chakka R, Sztrik J (2014) M/M/1 retrial queue with working vacations and negative customer arrivals. Int J Adv Intel Paradigms 6:52–65. https://doi.org/10.1504/IJAIP.2014.059586

    Article  Google Scholar 

  20. Farkhadov M, Fedorova E (2017) Retrial queue M/M/1 with negative calls under heavy load condition. Distributed Comput Commun Netw 406–416. https://doi.org/10.1007/978-3-319-66836-9_34

  21. Gao S, Wang J (2014) Performance and reliability analysis of an M/G/1 retrial G-queue with orbital search and non persistent customers. Eur J Oper Res 236:561–572. https://doi.org/10.1016/j.ejor.2014.01.065

    Article  MathSciNet  MATH  Google Scholar 

  22. Hui L, Tao Y (1995) A single server retrial queue with server vacations and a finite number of input sources. Eur J Oper Res 85:149–160. https://doi.org/10.1016/0377-2217(94)E0358-I

    Article  MATH  Google Scholar 

  23. Kirupa K, Chandrika KU (2014) Batch arrival retrial G-queue and an unreliable server with delayed repair. Int J Innov Res Sci Technol 3:12436–12444

    Google Scholar 

  24. Kirupa K, Chandrika KU (2018) Unreliable batch arrival retrial G-queue with fluctuating modes of service, preemptive priority and orbital search. Int J Math Trends Technol (Special Issue):45–53

    Google Scholar 

  25. Krishnakumar B, Pavai S, Laxmi SPA (2011) An M/G/1 Bernoulli feedback retrial queueing system with negative customers. Oper Res Int J 13:187–210. https://doi.org/10.1007/s12351-011-0107-5

    Article  Google Scholar 

  26. Laxmi PV, Soujanya ML (2015) Retrial inventory system with negative customers and service interruptions. Opsearch 52:212–224. https://doi.org/10.1007/s12597-014-0181-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Li T, Zhang L (2017) An M/G/1 retrial G-queue with general retrial times and working breakdowns. Math Comput Appl 22. https://doi.org/10.3390/mca22010015

  28. Liu Z, Wu J, Yang G (2009) An M/G/1 retrial G-queue with preemptive resume and feedback under N-policy subject to the server breakdowns and repairs. Comput Math Appl 58:1792–1807. https://doi.org/10.1016/j.camwa.2009.07.077

    Article  MathSciNet  MATH  Google Scholar 

  29. Nesrine Z, Natalia D (2018) On multiserver retrial queues with negative arrivals. Int J Math Operat Res 13:219–242. https://doi.org/10.1054/IJMOR.2018.094056

    Article  MathSciNet  MATH  Google Scholar 

  30. Nesrine Z, Spiteri P, Djellab N (2019) Numerical solution for the performance characteristics of the M/M/c/k retrial queue with negative customers and exponential abandonments by using extrapolation method. Rairo Operat Res 53:767–786. https://doi.org/10.1051/ro/2017059

    Article  MathSciNet  MATH  Google Scholar 

  31. Nila M, Sumitha D (2020) Analysis of repairable batch arrival retrial queueing system with second multi optional service, orbital search, priority and feedback customers. Int J Adv Sci Technol 29:2873–2882

    Google Scholar 

  32. Ohmura H, Takahashi Y (1985) An analysis of repeated call model with a finite number of sources. Electron Commun Jpn 68:112–121. https://doi.org/10.1002/ecja.4410680613

    Article  Google Scholar 

  33. Peng Y, Liu Z, Wu J (2014) An M/G/1 retrial G-queue with preemptive resume priority and collisions subject to server breakdowns and delayed repair. J Appl Math Comput 44(1–2):187–213. https://doi.org/10.1007/s12190-013-0688-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Radha J, Indhira K, Chandrasekaran VM (2017) A group arrival retrial G-queue with multi-optional stages of service, orbital search and server breakdown. IOP Conference Series: Material Science and Engineering. 263

    Google Scholar 

  35. Rajadurai P (2018) A study on M/G/1 retrial queueing system with three different types of customers under working vacation policy. Int J Math Model Numer Optim 8:393–417. https://doi.org/10.1504/IJMMNO.2018.094550

    Article  Google Scholar 

  36. Rajadurai P (2018) A study on M/G/1 retrial G-queue with unreliable server under variant working vacation policy and vacation interruption. Songklanakarin J Sci Technol 40:231–242

    Google Scholar 

  37. Rajadurai P (2018) Sensitivity analysis of an M/G/1 retrial queueing system with disaster under working vacations and working breakdowns. Rairo Operat Res 52:35–54. https://doi.org/10.1051/ro/2017091

    Article  MathSciNet  MATH  Google Scholar 

  38. Rajadurai P, Chandrasekaran VM, Saravanaranjan MC (2015) Analysis of MX/(G1, G2)/1 feedback retrial G-queue with balking and starting failures under at most J vacations. Appl Appl Math 10:13–39

    MathSciNet  Google Scholar 

  39. Rajadurai P, Chandrasekaran VM, Saravanaranjan MC (2015) Steady state analysis of batch arrival feedback retrial queue with two phases of service, negative customers, Bernoulli vacation and server breakdown. Int J Math Operat Res 7:519–546. https://doi.org/10.1054/IJMOR.2015.071276

    Article  MathSciNet  MATH  Google Scholar 

  40. Rajadurai P, Chandrasekaran VM, Saravanaranjan MC (2016) Analysis of MX/G/1 unreliable retrial G-queue with orbital search and feedback under Bernoulli vacation schedule. Opsearch 53:197–223. https://doi.org/10.1007/s12597-015-0226-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Rajadurai P, Chandrasekaran VM, Saravanaranjan MC (2017) An M/G/1 retrial G-queue with optional re-service, impatient customers, multiple working vacation and vacation interruption. Int J Operat Res 30. https://doi.org/10.1054/ijor.2017.10006388

  42. Rajadurai P, Chandrasekaran VM, Saravanaranjan MC (2018) Analysis of an unreliable retrial G-queue with working vacations and vacation interruption under Bernoulli schedule. Ain Shams Eng J 9:567–580. https://doi.org/10.1016/j.asej.2016.03.008

    Article  Google Scholar 

  43. Rajadurai P, Sundaraman M, Narasimhan D (2020) Performance analysis of an M/G/1 retrial G-queue with feedback under working breakdown services. Songklanakarin J Sci Technol 42:236–247

    Google Scholar 

  44. Rajkumar M (2013) An (s, S) inventory retrial system with impatient and negative customers. Int J Math Operat Res 6:106–122. https://doi.org/10.1504/IJMOR.2014.057862

    Article  MathSciNet  Google Scholar 

  45. Revathy HR, Subramanian MG (2013) Two server (s, S) inventory system with positive service time, positive lead time, retrial customers and negative arrivals. Int J Comput Appl 62:0975–8887. https://doi.org/10.5120/10115-4784

    Article  Google Scholar 

  46. Roszik J, Kim C, Szbik J (2005) Retrial queues in the performance modelling of cellular mobile networks using MOSEL. Int J Simul Syst Sci Technol 6:38–47

    Google Scholar 

  47. Shin YW (2007) Multi-server retrial queue with negative customers and disasters. Queue Syst 55:223–237. https://doi.org/10.1007/s11134-007-9018-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Singh CJ, Jain M, Kaur S, Meena RK (2017) Retrial bulk queue with state dependent arrival and negative customer. In: Proceedings of sixth international conference on soft computing for problem solving. Advances in intelligent systems and computing

    Google Scholar 

  49. Singh CJ, Kaur S, Jain M (2020) Unreliable server retrial G-queue with bulk arrival, optional additional service and delayed repair. Int J Oper Res 38:82–111. https://doi.org/10.1054/IJOR.2020.106362

    Article  MathSciNet  Google Scholar 

  50. Subramaniam AMG (2014) Study of some retrial queueing systems by generating function technique. Lambert

    Google Scholar 

  51. Tran-gia P, Mandjes M (1997) Modeling of customer retrial phenomenon in cellular mobile networks. IEEE J Select Areas Commun 15:1406–1414. https://doi.org/10.1199/49.634781

    Article  Google Scholar 

  52. Wang J, Liu B, Li J (2008) Transient analysis of an M/G/1 retrial queue subject to disasters and server failures. Eur J Oper Res 189:1118–1132. https://doi.org/10.1016/j.ejor.2007.04.054

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang J, Zhang P (2009) A discrete-time retrial queue with negative customers and unreliable server. Comput Ind Eng 56:1216–1222. https://doi.org/10.1016/j.cie.2008.07.010

    Article  Google Scholar 

  54. Wang J, Zhang P (2009) A single server discrete-time retrial G-queue with server breakdowns and repair. Acta Mathematica Applicatae Sinica. 25:675–684. https://doi.org/10.1007/s10255-008-8823-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu J, Lian Z (2013) A single server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule. Comput Ind Eng 64:84–93. https://doi.org/10.1016/j.cie.2012.08.015

    Article  Google Scholar 

  56. Wu J, Liu Z, Peng Y (2011) Analysis of the finite source MAP/Ph/N retrial G-queue operating in a random environment. Appl Math Model 35:1184–1193. https://doi.org/10.1016/j.apm.2010.08.006

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu J, Yin X (2011) An M/G/1 retrial G-queue with non-exhaustive random vacations and an unreliable server. Comput Math Appl 62:2314–2239. https://doi.org/10.1016/j.camwa.2011.07.018

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang S, Wu J, Liu Z (2013) An MX/G/1 retrial G-queue with single vacation subject to server breakdown and repair. Acta Mathematicae Applicatae Sinica. 29:579–596. https://doi.org/10.1007/s10255-013-0237-z

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang T, Li H (1995) On steady state queue size distribution of the discrete-time Geo/G/1 queue with repeated customers. Queue Syst 21:199–215. https://doi.org/10.1007/BF01158581

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetika Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, G., Upadhyaya, S., Sharma, R. (2021). A Study on Retrial G-Queues Under Different Scenarios: A Review. In: Singh, D., Awasthi, A.K., Zelinka, I., Deep, K. (eds) Proceedings of International Conference on Scientific and Natural Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-1528-3_18

Download citation

Publish with us

Policies and ethics

Navigation